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Information Pooling in High-Dimensional Analysis

e Vast amounts of data with various types of side information being collected
nowadays.

e Multiple testing - side information on the hypotheses is often used to
improve power of multiple testing procedures.

e In high dimensional estimation problems, such additional information
regarding the signal sparsity may yield more accurate results.

Aim
Construct an estimator that includes side information such that:

» new estimator is adaptive to the strength of side information and
robust to it's non-usefulness.

» if the side information is imperfect then the estimator is not too far
away from state-of-the-art sparse estimators built on using no side
information

» this extra information is used in a model agnostic fashion.

Motivating Data - estimating gene expression

e Primary data - expression level Y; of n =53, 216 genes infected with VZV
(varicella) virus.

e Goal - estimate the true expression level 6; of these n genes.

e Side information - expression levels corresponding to 4 disparate
experimental conditions; HELF, HT1080, IFNG and IFNA, for the same n
genes.
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A Framework for Information Pooling

e £ - latent noiseless side information encoding the sparsity of 0.
e S - noisy or observed side information.

e Relate O and S to €& via unknown real-valued functions hy and hs;.

0; = he(&, 771/)

Si = hs(&i, i)
Y, =0,+¢€;, €~ N(O, 0'12) with O'I-2 known

M1, i - random perturbations independent of &;.

» Flexible framework

» No assumption on any particular functional relationship between 6

and &
» S5; conditionally independent of Y; given laten &;
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ASUS - Adaptive SURE Thresholding using Side Information

Key idea - construct optimal groups and soft threshold separately in each
group.

Llet Z ={1,...,n} and T = {7, t1, t,}. Define
F=4i:0< |5 <7},
=1\1;
Class of soft thresholding estimators:
(T = Yi+om(Y)ifi €I}
Then the ASUS estimator is given by é,SI(7A') where

T = arg mTin S(7,Y,S)
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and

S(7,Y,S) = ZO +LL{ (

k=1 i€l,

s the SURE functlon.

Revisiting: estimating gene expression
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e SURE estimate of risk of SureShrink estimator is 3.69% at t = 0.61
e At 7 = {1.25,1.16,0}, the SURE estimate of risk of ASUS is 1.99%.

Risk reduction by ASUS over SureShrink is about 30% in a predictive framework.

Risk Properties and Theoretical Analyses

e S(7,Y,S) is uniformly close to the true risk (and loss)

With ¢, = n*/?(log n)~3/?,
S(T.Y,S) — r,(T 9)| L)
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where H, = R, x [0, t,]° and t, = (2 log n)*/?

S(T.Y,S) — (6, 9“5’(7))| LW

e RY° - maximal risk of the oracle procedure
e RN> - minimax risk of all soft thresh. estimators with no side information

o Rﬁ\s - maximal risk of ASUS

o ¢*(7) - prob. of misclassifying coordinate i into class j (summed over /)

Asymptotic Optimality of ASUS

If 3 a sequence {7,},>1 such that g'%(7,) and gq2(7,) are
appropriately controlled then

(RY> — R /(RNV —RP) 5 1asn— 0

o Let £, = (R)° —R7°)/ (R — Ry)

Robustness of ASUS

e We always have [Im&, > 1.

o If for all sequence {7,},>1, ¢*(7,) do not have the prescribed
control then we must have

E,— 1lasn— o0

ASUS is atleast asymptotically as efficient as competitive methods when
pooling non-informative auxiliary data.
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