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Information Pooling in High-Dimensional Analysis

• Vast amounts of data with various types of side information being collected
nowadays.

• Multiple testing - side information on the hypotheses is often used to
improve power of multiple testing procedures.

• In high dimensional estimation problems, such additional information
regarding the signal sparsity may yield more accurate results.

Aim

Construct an estimator that includes side information such that:
I new estimator is adaptive to the strength of side information and

robust to it’s non-usefulness.

I if the side information is imperfect then the estimator is not too far
away from state-of-the-art sparse estimators built on using no side
information

I this extra information is used in a model agnostic fashion.

Motivating Data - estimating gene expression

• Primary data - expression level Yi of n = 53, 216 genes infected with VZV
(varicella) virus.

• Goal - estimate the true expression level θi of these n genes.

• Side information - expression levels corresponding to 4 disparate
experimental conditions; HELF, HT1080, IFNG and IFNA, for the same n
genes.

A Framework for Information Pooling

• ξ - latent noiseless side information encoding the sparsity of θ.

• S - noisy or observed side information.

• Relate θ and S to ξ via unknown real-valued functions hθ and hs.

θi = hθ(ξi , η1i)

Si = hs(ξi , η2i)

Yi = θi + εi , εi ∼ N(0, σ2
i ) with σ2

i known

η1i , η2i - random perturbations independent of ξi .

I Flexible framework

I No assumption on any particular functional relationship between θ
and ξ

I Si conditionally independent of Yi given laten ξi

ASUS - Adaptive SURE Thresholding using Side Information

Key idea - construct optimal groups and soft threshold separately in each
group.

Let I = {1, . . . , n} and T = {τ , t1, t2}. Define

Iτ1 = {i : 0 < |Si| ≤ τ},
Iτ2 = I \ Iτ1

Class of soft thresholding estimators:

θ̂SIi (T ) := Yi + σiηtk(Yi) if i ∈ Iτk
Then the ASUS estimator is given by θ̂SIi (T̂ ) where

T̂ = arg min
T
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and

nS(T ,Y,S) =
n∑

i=1

σ2
i +

2∑
k=1

∑
i∈Iτk

{
σ2
i

(|Yi|
σi
∧ tk

)2
− 2σ2

i I
(|Yi|
σi
≤ tk

)}
is the SURE function.

Revisiting: estimating gene expression

• SURE estimate of risk of SureShrink estimator is 3.69% at t = 0.61

• At T̂ = {1.25, 1.16, 0}, the SURE estimate of risk of ASUS is 1.99%.

Risk reduction by ASUS over SureShrink is about 30% in a predictive framework.

Risk Properties and Theoretical Analyses

• S(T ,Y,S) is uniformly close to the true risk (and loss)

With cn = n1/2(log n)−3/2,

cn sup
T ∈Hn

∣∣∣S(T ,Y,S)− rn(T ;θ)
∣∣∣ L1→ 0,

cn sup
T ∈Hn

∣∣∣S(T ,Y,S)− ln(θ, θ̂SI(T ))
∣∣∣ L1→ 0

where Hn = R+ × [0, tn]2 and tn = (2 log n)1/2

• ROS
n - maximal risk of the oracle procedure

• RNS
n - minimax risk of all soft thresh. estimators with no side information

• RAS
n - maximal risk of ASUS

• qjkn (τ ) - prob. of misclassifying coordinate i into class j (summed over i)

Asymptotic Optimality of ASUS

If ∃ a sequence {τn}n≥1 such that q12
n (τn) and q21

n (τn) are
appropriately controlled then

(RNS
n −RAS

n )/(RNS
n −ROS

n )→ 1 as n→∞

• Let En = (RNS
n −ROS

n )/(RAS
n −ROS

n )

Robustness of ASUS

• We always have lim En ≥ 1.

• If for all sequence {τn}n≥1, qjkn (τn) do not have the prescribed
control then we must have

En → 1 as n→∞

ASUS is atleast asymptotically as efficient as competitive methods when
pooling non-informative auxiliary data.
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