Adaptive Sparse Estimation with Side Information

Trambak Banerjee (joint with Gourab Mukherjee & Wenguang Sun)

Data Sciences and Operations, University of Southern California

Information Pooling in High-Dimensional Analysis

- Vast amounts of data with various types of side information being collected nowadays.
- Multiple testing side information on the hypotheses is often used to improve power of multiple testing procedures.
- In high dimensional estimation problems, such additional information regarding the signal sparsity may yield more accurate results.

- away from state-of-the-art sparse estimators built on using no side information
- \triangleright this extra information is used in a model agnostic fashion.

Aim

Construct an estimator that includes side information such that:

- \triangleright new estimator is adaptive to the strength of side information and robust to it's non-usefulness.
- \triangleright if the side information is imperfect then the estimator is not too far

- Primary data expression level Y_i of $n = 53,216$ genes infected with VZV (varicella) virus.
- Goal estimate the true expression level θ_i of these *n* genes.
- Side information expression levels corresponding to 4 disparate experimental conditions; HELF, HT1080, IFNG and IFNA, for the same n genes.

- S noisy or observed side information.
- Relate θ and S to ξ via unknown real-valued functions h_θ and h_s .

 $\theta_i = h_\theta(\xi_i, \eta_{1i})$ $S_i = h_s(\xi_i, \eta_{2i})$ $Y_i = \theta_i + \epsilon_i, \epsilon_i \sim N(0, \sigma_i^2)$ with σ_i^2 $\frac{2}{i}$ known

 η_{1i},η_{2i} - random perturbations independent of $\xi_i.$

 \blacktriangleright Flexible framework

- \triangleright No assumption on any *particular* functional relationship between θ and ξ
- S_i conditionally independent of Y_i given laten ξ_i

• Let $\mathcal{E}_n = (\mathcal{R}_n^{\text{NS}} - \mathcal{R}_n^{\text{OS}})/(\mathcal{R}_n^{\text{AS}} - \mathcal{R}_n^{\text{OS}})$

Motivating Data - estimating gene expression

A Framework for Information Pooling

- ξ latent noiseless side information encoding the sparsity of θ .
-

• $S(\mathcal{T}, Y, S)$ is uniformly close to the true risk (and loss)

• SURE estimate of risk of SureShrink estimator is 3.69% at $t = 0.61$ • At $\tilde{\mathcal{T}}$ $\hat{\mathcal{T}}$ $= \{1.25, 1.16, 0\}$, the SURE estimate of risk of ASUS is 1.99% . Risk reduction by ASUS over SureShrink is about 30% in a predictive framework.

If \exists a sequence $\{\tau_n\}_{n\geq 1}$ such that q_n^{12} $n^{12}(\tau_n)$ and q_n^{21} $\frac{21}{n}(\tau_n)$ are appropriately controlled then

 $(\mathcal{R}^{NS}_n-\mathcal{R}^{AS}_n)/(\mathcal{R}^{NS}_n-\mathcal{R}^{OS}_n)\rightarrow 1$ as $n\rightarrow\infty$

• We always have $\lim \mathcal{E}_n \geq 1$. • If for all sequence $\{\tau_n\}_{n\geq 1}$, q_n^{jk} $\sigma_n^{jk}(\tau_n)$ do not have the prescribed control then we must have

 $\mathcal{E}_n \to 1$ as $n \to \infty$

ASUS - Adaptive SURE Thresholding using Side Information

Key idea - construct optimal groups and soft threshold separately in each group.

Let
$$
\mathcal{I} = \{1, ..., n\}
$$
 and $\mathcal{T} = \{\tau, t_1, t_2\}$. Define
\n
$$
\mathcal{I}_1^{\tau} = \{i : 0 < |S_i| \le \tau\},
$$
\n
$$
\mathcal{I}_2^{\tau} = \mathcal{I} \setminus \mathcal{I}_1^{\tau}
$$

Class of soft thresholding estimators:

 $\hat{\theta}^{\cdot}$ $\hat{\theta}_i^{\mathsf{SI}}$ $\mathcal{I}_i^{SI}(\mathcal{T}) \coloneqq Y_i + \sigma_i \eta_{t_k}(Y_i)$ if $i \in \mathcal{I}_k^{\tau}$ k Then the ASUS estimator is given by $\hat{\theta}$ $\hat{\theta}_i^{\mathsf{SI}}$ \int_{i}^{5l} (T $\hat{\mathcal{T}}$) where T $\hat{\mathcal{T}}$ $=$ arg min \mathcal{T} $S(\mathcal{T},\mathsf{Y},\mathsf{S})$

and

Revisiting: estimating gene expression

Risk Properties and Theoretical Analyses

With
$$
c_n = n^{1/2} (\log n)^{-3/2}
$$
,
\n
$$
c_n \sup_{\mathcal{T} \in \mathcal{H}_n} \left| S(\mathcal{T}, \mathbf{Y}, \mathbf{S}) - r_n(\mathcal{T}; \theta) \right| \stackrel{L_1}{\to} 0,
$$
\n
$$
c_n \sup_{\mathcal{T} \in \mathcal{H}_n} \left| S(\mathcal{T}, \mathbf{Y}, \mathbf{S}) - l_n(\theta, \hat{\theta}^{SI}(\mathcal{T})) \right| \stackrel{L_1}{\to} 0
$$
\nwhere $\mathcal{H}_n = \mathbf{R}_+ \times [0, t_n]^2$ and $t_n = (2 \log n)^{1/2}$

- \mathcal{R}_n^{OS} maximal risk of the oracle procedure
- \bullet \mathcal{R}_n^{NS} minimax risk of all soft thresh. estimators with no side information • \mathcal{R}_n^{AS} - maximal risk of ASUS
- \bullet q_n^{jk} $\bar{g}_n^{jk}(\tau)$ - prob. of misclassifying coordinate i into class j (summed over $i)$

Asymptotic Optimality of ASUS

Robustness of ASUS

ASUS is atleast asymptotically as efficient as competitive methods when pooling non-informative auxiliary data.

USC Marshall School of Business Trambak.Banerjee.2020@marshall.usc.edu