Adaptive Sparse Estimation with Side Information

Trambak Banerjee (joint with Gourab Mukherjee & Wenguang Sun)

Data Sciences and Operations, University of Southern California

Information Pooling in High-Dimensional Analysis

- Vast amounts of data with various types of side information being collected nowadays.
- Multiple testing side information on the hypotheses is often used to improve power of multiple testing procedures.
- In high dimensional estimation problems, such additional information regarding the signal sparsity may yield more accurate results.

Aim

Construct an estimator that includes side information such that:

- new estimator is adaptive to the strength of side information and robust to it's non-usefulness.
- if the side information is imperfect then the estimator is not too far

ASUS - Adaptive SURE Thresholding using Side Information

Key idea - construct optimal groups and soft threshold separately in each group.

Let
$$\mathcal{I} = \{1, \dots, n\}$$
 and $\mathcal{T} = \{\tau, t_1, t_2\}$. Define
$$\mathcal{I}_1^{\tau} = \{i : 0 < |S_i| \le \tau\},$$
$$\mathcal{I}_2^{\tau} = \mathcal{I} \setminus \mathcal{I}_1^{\tau}$$

Class of soft thresholding estimators:

 $\hat{\theta}_i^{SI}(\mathcal{T}) \coloneqq Y_i + \sigma_i \eta_{t_k}(Y_i) \text{ if } i \in \mathcal{I}_k^{\mathcal{T}}$ Then the ASUS estimator is given by $\hat{\theta}_{i}^{SI}(\hat{\mathcal{T}})$ where $\hat{\mathcal{T}} = \arg\min_{\mathcal{T}} S(\mathcal{T}, \mathbf{Y}, \mathbf{S})$ and

- away from state-of-the-art sparse estimators built on using no side information
- ► this extra information is used in a model agnostic fashion.

Motivating Data - estimating gene expression

- Primary data expression level Y_i of n = 53,216 genes infected with VZV (varicella) virus.
- Goal estimate the true expression level θ_i of these *n* genes.
- Side information expression levels corresponding to 4 disparate experimental conditions; HELF, HT1080, IFNG and IFNA, for the same n genes.

Revisiting: estimating gene expression

• SURE estimate of risk of SureShrink estimator is 3.69% at t = 0.61• At $\hat{\mathcal{T}} = \{1.25, 1.16, 0\}$, the SURE estimate of risk of ASUS is 1.99%. Risk reduction by ASUS over SureShrink is about 30% in a predictive framework.

Risk Properties and Theoretical Analyses

A Framework for Information Pooling

- ξ latent noiseless side information encoding the sparsity of θ .

• $S(\mathcal{T}, \mathbf{Y}, \mathbf{S})$ is uniformly close to the true risk (and loss)

With
$$c_n = n^{1/2} (\log n)^{-3/2}$$
,
 $c_n \sup_{\mathcal{T} \in \mathcal{H}_n} \left| S(\mathcal{T}, \mathbf{Y}, \mathbf{S}) - r_n(\mathcal{T}; \theta) \right| \stackrel{L_1}{\to} 0$,
 $c_n \sup_{\mathcal{T} \in \mathcal{H}_n} \left| S(\mathcal{T}, \mathbf{Y}, \mathbf{S}) - I_n(\theta, \hat{\theta}^{SI}(\mathcal{T})) \right| \stackrel{L_1}{\to} 0$
where $\mathcal{H}_n = \mathbf{R}_+ \times [0, t_n]^2$ and $t_n = (2 \log n)^{1/2}$

- \mathcal{R}_{n}^{OS} maximal risk of the oracle procedure
- \mathcal{R}_n^{NS} minimax risk of all soft thresh. estimators with no side information • \mathcal{R}_n^{AS} - maximal risk of ASUS
- $q_n^{jk}(\tau)$ prob. of misclassifying coordinate *i* into class *j* (summed over *i*)

Asymptotic Optimality of ASUS

If \exists a sequence $\{\tau_n\}_{n>1}$ such that $q_n^{12}(\tau_n)$ and $q_n^{21}(\tau_n)$ are appropriately controlled then

 $(\mathcal{R}_n^{NS} - \mathcal{R}_n^{AS})/(\mathcal{R}_n^{NS} - \mathcal{R}_n^{OS}) \rightarrow 1 \text{ as } n \rightarrow \infty$

- **S** noisy or observed side information.
- Relate θ and **S** to ξ via unknown real-valued functions h_{θ} and h_s .

 $\theta_i = h_{\theta}(\boldsymbol{\xi}_i, \eta_{1i})$ $S_i = h_s(\xi_i, \eta_{2i})$ $Y_i = \theta_i + \epsilon_i, \ \epsilon_i \sim N(0, \sigma_i^2)$ with σ_i^2 known

 η_{1i}, η_{2i} - random perturbations independent of ξ_i .

- Flexible framework
- ▶ No assumption on any *particular* functional relationship between θ and $\boldsymbol{\xi}$
- \triangleright S_i conditionally independent of Y_i given laten ξ_i

• Let $\mathcal{E}_n = (\mathcal{R}_n^{NS} - \mathcal{R}_n^{OS})/(\mathcal{R}_n^{AS} - \mathcal{R}_n^{OS})$

Robustness of ASUS

- We always have $\lim \mathcal{E}_n \geq 1$.
- If for all sequence $\{\tau_n\}_{n>1}$, $q_n^{jk}(\tau_n)$ do not have the prescribed control then we must have

 ${\mathcal E}_n o 1$ as $n o \infty$

Trambak.Banerjee.2020@marshall.usc.edu

ASUS is atleast asymptotically as efficient as competitive methods when pooling non-informative auxiliary data.

USC Marshall School of Business