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Abstract

Nonparametric two-sample testing is a classical problem in inferential statistics.
While modern two-sample tests, such as the edge count test and its variants, can
handle multivariate and non-Euclidean data, contemporary gargantuan datasets often
exhibit heterogeneity due to the presence of latent subpopulations. Direct application
of these tests, without regulating for such heterogeneity, may lead to incorrect statis-
tical decisions. We develop a new nonparametric testing procedure that accurately
detects differences between the two samples in the presence of unknown heterogene-
ity in the data generation process. Our framework handles this latent heterogeneity
through a composite null that entertains the possibility that the two samples arise
from a mixture distribution with identical component distributions but with possi-
bly different mixing weights. In this regime, we study the asymptotic behavior of
weighted edge count test statistic and show that it can be effectively re-calibrated to
detect arbitrary deviations from the composite null. For practical implementation we
propose a Bootstrapped Weighted Edge Count test which involves a bootstrap-based
calibration procedure that can be easily implemented across a wide range of hetero-
geneous regimes. A comprehensive simulation study and an application to detecting
aberrant user behaviors in online games demonstrates the excellent non-asymptotic
performance of the proposed test. Supplementary materials for this article are avail-
able online.

Keywords: composite hypothesis testing; consumer behavior analysis; heterogeneity; two-
sample tests.
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1 Introduction

Nonparametric two-sample testing is a classical problem in inferential statistics. The use

of these tests is pervasive across disciplines, such as medicine (Farris and Schopflocher,

1999), consumer research (Folkes et al., 1987), remote sensing (Conradsen et al., 2003) and

public policy (Rothman et al., 2006), where detecting distributional differences between the

two samples is germane to the ongoing scientific analysis. Nonparametric two-sample tests

like the Kolmogorov-Smirnov test, the Wilcoxon rank-sum test, and the Wald-Wolfowitz

runs test are extremely popular tools for analyzing univariate data. Multivariate versions

of these tests have their origins in the randomization tests of Chung and Fraser (1958)

and in the generalized Kolmogorov-Smirnov test of Bickel (1969). Friedman and Rafsky

(1979) proposed the first computationally efficient nonparametric two-sample test, the edge

count test, for high-dimensional data. Modern versions of the edge count test, such as

the weighted and generalized edge count test (Chen and Friedman, 2017; Chen et al.,

2018), can handle multivariate data, and can be applied to any data types as long as

an informative similarity measure between the data points can be defined. Besides the

edge count tests, several tests based on nearest-neighbor distances (Henze, 1984; Schilling,

1986; Chen et al., 2013; Hall and Tajvidi, 2002; Banerjee et al., 2020) and matchings

(Rosenbaum, 2005; Mukherjee et al., 2022) have been proposed over the years, and used

in variety of applications, such as covariate balancing (Heller et al., 2010a,b), change point

detection (Chen and Zhang, 2015; Shi et al., 2017), gene-set analysis (Rahmatallah et al.,

2012), microbiome data (Callahan et al., 2016; Holmes and Huber, 2018; Fukuyama, 2020),

among others.

Bhattacharya (2019) propose a general framework to study the asymptotic proper-

ties of these graph based tests. In addition to the graph based tests, other popular two-

sample tests include the energy distance test of Székely (2003) and Székely and Rizzo

(2004) (see also Baringhaus and Franz (2004); Aslan and Zech (2005); Székely and Rizzo

(2013)), and kernel tests based on the maximum mean discrepancy (see Gretton et al.

(2007); Chwialkowski et al. (2015); Ramdas et al. (2015, 2017) and the references therein).

Recently, several authors have proposed distribution-free two-sample tests using optimal
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transport based multivariate ranks (see Deb and Sen (2021); Ghosal and Sen (2019); Shi

et al. (2020a), and Shi et al. (2020b) and the references therein).

While there exists a vast literature on nonparametric two-sample tests, their perfor-

mance in scenarios where the two samples might contain different heterogeneous structures

have not been well-explored before. A notable exception is Karmakar et al. (2015) who

develop a test for a two-sample location problem when the samples arise from mixture

distributions that are multi-modal with widely different mixing weights. In a host of con-

temporary data analysis problems (See Ch. 3 of Holmes and Huber (2018), Rossi et al.

(2012)) there is a need to conduct inference in presence of unknown heterogeneity in the

data generation process. This is particularly important when there are latent subpopula-

tions in the two populations from which the samples were extracted. Detecting distribu-

tional differences across the two samples is challenging in the presence of such heterogeneity

because the two samples may differ with respect to the rates with which they arise from

the underlying subpopulations. In these settings, direct application of existing two-sample

tests, without regulating for the latent heterogeneity in the samples, may lead to incorrect

statistical decisions and scientific consequences. In this article, we develop a new nonpara-

metric testing procedure that can accurately detect if there are differences between the

two samples in the presence of latent heterogeneity in the data generation process. We

next present two contemporary data examples to motivate the two-sample testing problem

under heterogeneity and discuss how existing tests may lead to incorrect decisions in the

presence of heterogeneity.

1.1 Motivating examples for testing under heterogeneity

Example 1: Detecting shift in consumer sentiment and spending pattern –

Detecting shifts in consumer sentiment and their spending pattern in response to exogenous

economic shocks, such as a pandemic, war or supply chain constraints, is important from

the perspective of public policy and businesses operations across different sectors (Agarwal

et al., 2019; Crouzet et al., 2019; Bruun, 2021; Bartik et al., 2020). Evidence of such changes

in spending pattern is used to make policy decisions on the allocation of future resources
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to tackle the shifting landscape of consumer demand (Balis, 2021; Liguori and Pittz, 2020;

Akpan et al., 2022). Data privacy rules, however, often forbid using personally identifiable

information, such as individual consumer demographics and spending patterns over time,

thus ruling out the possibility of acquiring a rich consumer level panel data and utilizing

sophisticated tools from causal inference to detect changes in spending patterns in response

to the event of interest. A two-sample statistical test of hypothesis is often conducted to

determine whether the spending pattern of a sample of consumers before the event of

interest is significantly different from the spending pattern of an independent sample of

consumers during or after the event of interest. Despite being much less powerful than

tests based on comprehensive longitudinal data, the two-sample tests have the advantage

of being substantially more privacy-preserving as these non-intrusive tests only need two

independent vectors of observations and thus can be implemented across a wide range of

contemporary applications. However, there are two main challenges for devising a test of

hypothesis that can correctly detect such differences in the spending pattern between these

two independent samples:

(1.) The two samples may exhibit sample size imbalances which presents a challenging

setting for nonparametric two-sample testing on multivariate data (Chen et al., 2018).

(2.) The consumer base may consist of several heterogeneous subpopulations with respect

to their consumption behavior. In business and economic modeling it is now common-

place to model such consumption behavior as a mixture of several distinct consumption

patterns (Fahey et al., 2007; Labeeuw and Deconinck, 2013).

Due to an exogenous shock we can have one of the following three situations regarding the

behavior of consumers after the shock:

I. Consumer behavior does not change and maintains the pre-shock levels.

II. Consumption behavior changes but there are no new consumption patterns. The

change in the consumption distribution is due to changes in the proportions of existing

modes of consumption. This is the case where there is switching between the different
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consumption modes but no new consumption patterns evolve due to the external

shock.

III. Consumption behavior changes and there are new consumption patterns that were

previously non-existent.

In this paper, we concentrate on the detection of the third case, Case III, where new con-

sumption patterns emerge post-shock. Accurate and timely identification of Case III is

important for it allows researchers to understand if deviant forms of consumption (Kosken-

niemi, 2021) arise after a critical event, which can then be subsequently studied and ana-

lyzed with higher granularity data. Statistically, the main challenge here lies in correctly

detecting Case III while not misidentifying Cases I and II as type I error. Two-sample

testing procedures in the existing literature (discussed at the beginning of Section 1) are

designed to distinguish between Cases I and II. We will show that without modifications

their direct usage do not produce correct inference for this exercise.

We further elucidate this problem with the help of a simple simulation example. Con-

sider a bivariate consumption problem with consumption on sector A denoted by X1 and

on sector B by X2. We have bivariate observations (X1, X2) for two random samples of

customers before and after the shock (event). In Figure 1, the dots represent the sample of

consumers pre-event, while the triangles represent an independent sample of consumers

post-event. The three plots in Figure 1 present the distribution of spending pattern

with respect to (X1, X2) and reveals that the pre-event sample exhibits four distinct sub-

populations. The leftmost panel represents the setting where the consumption pattern

of post-event consumers originate from these four subpopulations with equal probabili-

ties. The center panel presents the setting of Case II where a majority of the post-event

consumers arise from one of the four subpopulations without a shift in the levels of their

consumption for that subpopulation. This represents normal consumption with only the

proportional representation of the latent states of normal consumption being changed. The

rightmost panel, on the other hand, reveals that the post-event consumers originate from

a new subpopulation that exhibits a change in the levels of consumption after the event

(Case III).
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Figure 1: Testing shift in consumer spending pattern due to external economic shock. Triangles

represent a sample of consumers post-event, while the dots represent an independent sample

of consumers pre-event. The pre-event sample exhibits four distinct subpopulations. Left–

consumption pattern of post-event consumers originate from these four subpopulations with

equal probabilities. Center– majority of the post-event consumers arise from one of the four

subpopulations without a shift in the levels of their consumption for that subpopulation. Right–

post-event consumers originate from a new subpopulation that exhibits a change in the levels

of consumption after the shock. The simulation scheme for these plots is described in Section B

of Supplement A.

Distinction between the two settings presented in the center (Case II) and right (Case

III) panels of Figure 1 is critical for policy makers and marketeers. In this paper, we

develop a consistent two-sample testing framework that can detect Case III from Cases I

and II in the presence of sample size imbalance as well as heterogeneity. We next discuss

another motivating example regarding consumption of digital entertainment, which will be

further pursued in Section D of Supplement A.

Example 2: Detecting differences in player behavior in online games – Online

gaming is an important component of modern recreational and socialization media (Baner-

jee et al., 2023). For monetization of these digital products, managers often have to deliver

personalized promotions to users based on their product usage. Additionally, through pro-

motional intervention the portal needs to regulate addiction, violence and other deviant

consumption patterns (Hull et al., 2014) that can cause long term societal harms. As

it is difficult to manually track every game, the portals use automated decision rules to
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monitor the game sessions and rely on features extracted at regular intervals of time, such

as hourly or half-hourly, to constantly check for deviant consumption within each game

session. When evidence of preponderance of deviant consumption is available, managerial

interventions are made.
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Figure 2: Differences in playing behavior in online video games. Triangles represent the sample

of current players, while the dots are the sample of normal players from historical logs. The

sample of normal players exhibits three distinct subpopulations. Left– Case I: Current sample

originates from three subpopulations present in the sample of normal players with equal probabil-

ities. Center– Case II: most members in the current sample originate from only one of the three

subpopulations. Right– Case III: current sample originates from one of the three subpopulations

but exhibits a different scale. The simulation scheme for these plots is described in Section B of

Supplement A.

Statistically, the problem here again reduces to the correct detection of scenarios per-

taining to Case III described in Figure 1 above. To see this, note that based on historical

data a multivariate sample of gaming features from players corresponding to normal gaming

characteristics is available. The size of such a sample is huge as it is based on historical logs.

The goal is to compare the instantaneous gaming features of a subset (gated by region,

age, etc) of currently logged-on players with respect to this sample. The sample size of this

subset of players is much smaller than the benchmark normal gaming consumption sample

and so, we encounter the issue of sample size imbalance. Additionally, while comparing

these two samples we are interested in detecting if there is a sub-population of players with

deviant gaming characteristics which would need regulating promotional incentives related

to purchase of gaming artifacts. This again corresponds to different Case III scenarios
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described above. Even without any instance of deviant usage, instantaneous gaming char-

acteristics greatly change over time-of-day, for instance early morning players and evening

players have varying characteristics. This corresponds to scenarios in Case II. Thus, the

goal will be to detect Case III scenarios while allowing the possibility for scenarios from

Cases I and II. We illustrate this through a simulation example in Figure 2.

Consider observing d = 3 dimensional characteristics, X1, X2 and X3 of playing behav-

ior. The dots in Figure 2 represent the sample of normal players from historical records.

It exhibits three distinct subpopulations of equal sizes. The triangles represent the sample

of players from a current session. The leftmost panel depicts a setting where the current

sample originates from these three subpopulations with equal probabilities (an instance of

Case I). The center panel presents the setting where a majority of the players in the current

sample are from one of the three subpopulations (an instance of Case II), and the rightmost

panel reveals an instance of Case III where there is a new sub-population represented by

the triangles that was non-existent in normal players. Note that, unlike Figure 1 here the

deviant sub-population differs from one of the three subpopulations of normal players only

in scale and not in locations. Detecting this case is more difficult than Figure 1 and we

present a detailed analysis in Section 4. In Section D of Supplement A we develop this

example and apply our proposed hypothesis testing method to detect addictive behaviors

in a real-world gaming dataset.

1.2 Two-sample testing under heterogeneity and our contribu-

tions

Existing nonparametric two-sample tests cannot distinguish between the scenarios pre-

sented in the center and right panels of Figures 1 and 2. For instance, the edge count

test (Friedman and Rafsky, 1979), the weighted edge count test (Chen et al., 2018) and

the generalized edge count test (Chen and Friedman, 2017) reject the null hypothesis of

equality of the two distributions for both Cases II and III in Figures 1 and 2 (see tables 7

and 8 in Section B of Supplement A for more details). This is not surprising because these

nonparametric two-sample tests are designed to test the null hypothesis of equality of the
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two distributions (Case II vs Case I) and directly using them, without any modification, to

detect Case III scenarios from Case II can be misleading. To resolve this conundrum, we

develop a hypothesis testing framework based on an appropriately constructed composite

null hypothesis (Equations (5)–(7)). Under this composite null hypothesis, we study the

properties of the Weighted Edge Count (WEC) test statistic of Chen et al. (2018) and show

that it can be re-calibrated to produce an asymptotically consistent two-sample test. For fi-

nite sample applications, we propose a bootstrap-based calibration procedure for the WEC

test statistic that allows it to consistently and efficiently detect differences between the two

samples under subpopulation level heterogeneity. The ensuing discussion summarizes our

key contributions.

• We study the asymptotic properties of the WEC statistic for the heterogeneous two-

sample problem (Section 2). Specifically, we show how one can choose a cut-off that

renders the WEC statistic asymptotically powerful for detecting any distribution

that significantly deviates from the composite null hypothesis (see Equation (7)),

which encompasses the possibility that the two samples arise from the same mixture

distribution but with possibly different mixing weights (see Proposition 1). This is in

contrast to the TRUH test in Banerjee et al. (2020) which can only detect deviations in

location under the concerned composite null hypothesis. Detecting variance changes

in subpopulations with the same mean effects is important in virology applications

of two-sample tests (Cavrois et al., 2017; Sen et al., 2014). Increased variance may

indicate a higher probability of having malignant cells due to viral influence (Sen

et al., 2015).

This phenomenon arises because, unlike the TRUH statistic, which compares the

nearest neighbor distances between the two samples, the WEC statistic is based on

the number of within-sample edges in a similarity graph of the pooled sample. The

combinatorial (count-type) nature of the WEC statistic renders it asymptotically

distribution-free under the homogeneous null (Equation (1)), that is, the distribution

of the test statistic does not depend on the null distribution of the data. Moreover,

the WEC statistic estimates the well-known Henze-Penrose divergence (see Equation

9



(9) for the definition) and, consequently, can detect arbitrary differences between two

distributions under the homogeneous null. We leverage these properties to obtain a

cut-off for the WEC statistic that can detect deviations from the heterogeneous null

(Equation (7)), beyond location problems.

• For non-asymptotic usage, we develop a novel bootstrap-based calibration procedure

for the weighted edge count test statistic (Algorithm 1 in Section 3) and use it to

test the composite null hypothesis that the two samples arise from the same mixture

distribution but with possibly different mixing weights (Equations (5)–(7)). Under

sample size imbalance, our calibration procedure first explores the larger sample for

heterogeneous subgroups. Then it generates an ensemble of mixing weights for the

different subgroups and subsequently constructs a collection of surrogate two-samples

under the composite null hypothesis. The WEC test statistic is computed for each

such surrogate two-samples and the ensemble of these WEC test statistics is then used

to determine the level α cutoff for testing the composite null hypothesis (Equation

(7)).

• Our numerical experiments (Section 4) reveal that across a wide range of simulation

settings, the proposed bootstrap calibration procedure results in a conservative level

α cutoff for the WEC test statistic for consistent nonparametric two sample testing

involving the composite null hypothesis of Equation (7). This is in contrast to ex-

isting nonparametric two-sample tests that may lead to incorrect inference in this

regime. Furthermore, our empirical evidence suggests that the bootstrap calibration

procedure renders the WEC test more powerful than the recently introduced TRUH

test (Banerjee et al., 2020) for the heterogeneous two sample problem.

• We apply our proposed hypothesis testing procedure to detect addictive behaviors in

online gaming (Section D of Supplement A). On an anonymized data available from a

large video game company in Asia, we test whether players who login after midnight

and players who login early in the morning exhibit deviant playing behavior when

compared to players with normal gaming behavior. Our analysis reveals that the
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playing behavior of players who login after midnight is statistically different from the

normal gaming behavior, while those who login early, crucially enough, do not exhibit

such differences in their playing behavior. These results confirm the findings in extant

research that indicate higher tendency towards game addiction for those players who

login late (Lee and Kim, 2017). Existing nonparametric two-sample tests, on the

other hand, erroneously conclude aberrant gaming behavior for both sets of players,

those who login late and those who login early.

2 Nonparametric two-sample testing under heterogene-

ity

We begin with a review of the edge count tests in Section 2.1. Thereafter, Section 2.2

introduces the heterogeneous two-sample hypothesis testing problem. In Section 2.3 we

study the asymptotic properties of the WEC statistic for the heterogeneous two-sample

problem.

We first collect some notations that will be used throughout this article. Denote the two

independent samples by Xn = {X1, . . . ,Xn} and Ym = {Y1, . . . ,Ym}. Suppose each Xi ∈

Rd, i = 1, . . . , n, is distributed independently and identically according to a distribution

that has cumulative distribution function (cdf) FX . Similarly, denote FY as the cdf of the

distribution of Yj ∈ Rd for j = 1, . . . ,m. Denote N = n +m and let ZN = {Xn,Ym} be

the pooled sample.

2.1 Edge count tests – a review

In their seminal paper Friedman and Rafsky (1979) introduced the edge-count (EC) test

for the classical two-sample hypothesis testing problem:

H0 : FX = FY versus H1 : FX ̸= FY . (1)

The EC test can be described as follows:
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• Construct a similarity graph G (based on the pairwise distances between the obser-

vations) of the pooled sample ZN .

• Count the number of edges R0 in the graph G with one end-point in sample 1 and

other in sample 2, and reject H0 in Equation (1) if R0 is ‘small’.

Friedman and Rafsky (1979) chose G to be the ℓ-minimum spanning tree (MST) of the

pooled sample ZN using the L2 distance1. Thereafter, tests based on other similarity

graphs have been proposed. In particular, Schilling (1986) and Henze (1988) considered

tests where G is the nearest-neighbor graph and Rosenbaum (2005) proposed a test where

G is the minimum non-bipartite matching. The aforementioned tests are all asymptotically

distribution-free (the asymptotic distribution of R0 under H0 in Equation (1) does not

depend on the distribution of the data), universally consistent (the test has asymptotic

power 1 for all alternatives in Equation (1)), and computationally efficient (running time is

polynomial in both the number of data points and dimension), making them readily usable

in applications.

Although the EC test is universally consistent (see (Henze and Penrose, 1999, Theorem

2)), Chen and Friedman (2017) and Chen et al. (2018) observed that it has two major

limitations: First, empirical evidence suggest that the EC test has low or no power for

scale alternatives even though asymptotically the test is consistent for both location and

scale alternatives (Henze and Penrose, 1999). Second, under sample size imbalance the EC

test statistic has a relatively large variance and exhibits low power for detecting departures

from the null hypothesis in Equation (1). To mitigate these issues, Chen and Friedman

(2017) and Chen et al. (2018) suggested new tests based on the within sample edges in

the similarly graph G. Towards this, suppose EG denotes the edge set of G. For an edge

1A spanning tree of a finite set S ⊂ Rd is a connected graph with vertex-set S and no cycles. A

1-minimum spanning tree (MST), or simply a MST, of S is a spanning tree which minimizes the sum of

distances across the edges of the tree. A ℓ-MST of S, for ℓ ≥ 2, is the union of the edges in the (ℓ− 1)-MST

together with the edges of the spanning tree that minimizes the sum of distances across edges subject to

the constraint that this spanning tree does not contain any edge of the (ℓ− 1)-MST.
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e = (i, j) ∈ EG, let

Je =


2 if observations i and j are from sample Ym,

1 if observations i and j are from sample Xn,

0 if observations i and j are from different samples.

For k ∈ {0, 1, 2}, define

Rk =
∑
e∈EG

I{Je = k}. (2)

Note that R0, which counts the number of between-sample edges, is the EC statistic intro-

duced before. Similarly, R1 is the number of edges with both endpoints in Xn and R2 is

the number of edges with both endpoints in Ym.

To addresses the issue of low power for scale alternatives, Chen and Friedman (2017)

proposed the Generalized Edge Count (GEC) test, which rejects the null hypothesis H0 in

Equation (1) for large values of

Rg(Xn,Ym) = (R1 − µ1, R2 − µ2)Σ
−1(R1, R2)

T , (3)

where µk = E(Rk), for k = 1, 2, and Σ is the covariance matrix of (R1, R2)
T under the

permutation null distribution (see Lemma 3.1 of Chen and Friedman (2017) for the an-

alytical expression of these quantities). The Weighted Edge Count (WEC) test of Chen

et al. (2018) addresses the issue of sample-size imbalance by proposing a new test statistic

Rw(Xn,Ym) based on the weighted sum of the within sample edges, R1 and R2, as follows:

Rw(Xn,Ym) =
1

N

(m
N
R1 +

n

N
R2

)
. (4)

The weighting scheme controls the variance of Rw as opposed to the EC test statistic

based on R0. The test rejects H0 in Equation (1) for large values of Rw(Xn,Ym), where

the cut-off is computed from the permutation or the asymptotic null distribution under

H0 : FX = FY . Evidence from the empirical studies of Chen et al. (2018) reveal that under

sample size imbalance and for location alternatives, the WEC test is more powerful than

both the EC test and the GEC test.
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2.2 The heterogeneous two-sample problem

In this section we introduce the heterogeneous two-sample hypothesis testing problem using

motivating Example 2 from Section 1.1. For ease of exposition, we will refer the population

of players who exhibit normal playing behavior as the baseline population. So in our

example, Xn is an i.i.d random sample of size n from the baseline population that has cdf

FX and Ym is an i.i.d random sample of size m from the population of current players

that has cdf FY . We consider a setting where the heterogeneity in the baseline population

is represented by K different subgroups, each having unimodal distributions with distinct

modes and cdfs F1, . . . , FK , such that

FX =
K∑
a=1

wa Fa, where wa ∈ (0, 1) and
K∑
a=1

wa = 1. (5)

Here the number of components K, the mixing distributions F1, . . . , FK , and the mixing

weights w1, . . . , wK are fixed (non-random) but unknown. Furthermore, since F1, . . . , FK

are cdfs from unimodal distributions with distinct modes, FX is well-defined with a unique

specification i.e, FX ̸=
∑K

a=1 w̃a Fa if w̃a ̸= wa for at least one a ∈ {1, . . . , K}. The popula-

tion of normal players may exhibit two distinct phenomenon. First, the normal players can

have similar playing behavior as the baseline population but a different representation of

the K subpopulations than those reflected by the mixing proportions {w1, . . . , wK}. This

may imply that a few baseline subpopulations are completely absent in the population of

normal players. Thus, if the normal players do not exhibit a different playing behavior then

their cdf FY lies in a class of distributions F(FX) that contains any convex combination

of {F1, . . . , FK} including the boundaries, that is,

F(FX) =

{
Q =

K∑
a=1

λa Fa : λ1, λ2, . . . , λK ∈ [0, 1] and
K∑
a=1

λa = 1

}
. (6)

Note that the left and center panels of Figure 2 are examples of the setting where FY ∈

F(FX). Furthermore, FX ∈ F(FX) in Equation (6). Second, if the normal players exhibit a

different playing behavior than the baseline population, then FY would contain at least one

non-trivial subpopulation with distribution substantially different from {F1, F2, . . . , FK} or

their linear combinations. Then, FY /∈ F(FX) and the right panel of Figure 2 represents
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this phenomenon. The heterogeneous two-sample problem that we consider in this article

involves testing the following composite null hypothesis:

H0 : FY ∈ F(FX) versus H1 : FY /∈ F(FX). (7)

In contrast, the null hypothesis in Equation (1), while composite, tests the equality of

two distributions. Existing nonparametric graph-based two-sample tests, such as the EC

test, are designed to test the null hypothesis H0 : FX = FY of Equation (1), and are not

conservative for testing the composite null hypothesis H0 : FY ∈ F(FX) of Equation (7)

(see, for example, Proposition 1 in (Banerjee et al., 2020)).

2.3 Asymptotic properties of WEC statistic under heterogeneity

In this section we will discuss how one can calibrate the WEC statistic under heterogeneity

to obtain a test that is asymptotically powerful for general practical alternatives. For

this we assume that the baseline cdfs F1, F2, . . . , FK have unimodal densities f1, f2, . . . , fK

(with respect to Lebesgue measure). Therefore, the baseline population will have density

fX =
∑K

a=1wafa (recall Equation (5)), and the set of distributions in Equation (6) can be

represented in terms of the densities f1, f2, . . . , fK as:{
g =

K∑
a=1

λa fa : λ1, λ2, . . . , λK ∈ [0, 1] and
K∑
a=1

λa = 1

}
,

and will be denoted by F(fX). Then, assuming that the population of current players has

density fY , the hypothesis testing problem in Equation (7) can be restated as:

H0 : fY ∈ F(fX) versus H1 : fY /∈ F(fX).

To calibrate the WEC statistic asymptotically we invoke the following well known result (see

Chen et al. (2018, Theorem 4) and Henze and Penrose (1999, Theorem 2)): Suppose Xn =

{X1, . . . ,Xn} and Ym = {Y1, . . . ,Ym} are i.i.d. samples from d-dimensional distributions

with absolutely continuous densities fX and fY , respectively. Then as m,n → ∞ such

that n/m → ρ ∈ (0,∞),

Rw(Xn,Ym)
P→ ℓρ

(1 + ρ)2
· δρ(fX , fY ), (8)
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where Rw(Xn,Ym) is defined in Equation (4) and

δρ(fX , fY ) =

∫
S

ρf 2
X(x) + f 2

Y (x)

(ρfX(x) + fY (x))
dx. (9)

The quantity δρ(fX , fY ) is known as the Henze-Penrose divergence between the densities

fX and fY and plays a central role in the consistency of edge-count type tests.

To prove our asymptotic results we assume the following:

Assumption 1. The weights of the baseline population are bounded below, that is, there

exists a known constant L > 0 such that wa > L, for 1 ≤ a ≤ K.

Then, we have the following result in the usual asymptotic regime where m,n → ∞

such that n/m → ρ ∈ (0,∞).

Proposition 1. Suppose the similarity graph G is the ℓ-MST, for some finite ℓ ≥ 1. Denote

γ = (1 + ρ)ρ−2L−1K2. Then under Assumption 1 the following hold:

(1) For any fY ∈ F(fX), δρ(fX , fY ) < 1 + γ. This implies,

lim
m,n→∞

PfX ,fY

{
Rw(Xn,Ym) ≥

ℓρ

(1 + ρ)2
(1 + γ)

}
= 0.

(2) Whenever δρ(fX , fY ) > 1 + γ, then fY /∈ F(fX) and

lim
m,n→∞

PfX ,fY

{
Rw(Xn,Ym) ≥

ℓρ

(1 + ρ)2
(1 + γ)

}
= 1.

This result shows that one can choose a cut-off of the WEC statistic based on its

asymptotic property such that the probability of Type I error is asymptotically zero for

all fY ∈ F(fX). Moreover, the power of the test is asymptotically 1, whenever fY is ‘far’

(in the terms of the Henze-Penrose divergence) from the baseline density fX . The proof

of Proposition 1 entails showing that δρ(fX , fY ) is uniformly bounded above under the

composite null H0 : fY ∈ F(fX). The result in statement (2) is an immediate consequence

of statement (1) and the convergence in Equation (8) (details are given in Section A of

Supplement A).

To understand the separation criteria in Proposition 1, note that δρ(fX , fX) = 1 and

δρ(fX , fY ) > 1 whenever fX ̸= fY almost everywhere. Hence, δρ(fX , fY )− 1 is a measure
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of the signal strength, and Proposition 1 shows that the WEC test is consistent whenever

the signal strength is at least γ. Also, note that δρ(fX , fY ) ≤ 2, for all fX , fY . Hence,

the result in Proposition 1 is non-trivial only if γ < 1. While this might not hold for small

value of ρ, but when ρ is large, that is, when the sample sizes are imbalanced (which is a

regime of interest in this paper), γ decreases and the signal strength requirement becomes

weaker. Note that limρ→∞ γ = 0. Hence, as ρ increases one can detect smaller deviations

from H0, which highlights the advantage of the WEC statistic for unbalanced samples.

One caveat, of course, is that when δρ(fX , fY ) < 1 + γ but fY /∈ F(fX), the proposed

test statistic with an asymptotic cut-off of ℓρ(1 + ρ)−2(1 + γ) will be powerless, although,

as discussed above, for larger ρ this problem is mitigated. Nevertheless, it is seen from

simulations that the WEC with a more practical choice of cut-off (discussed next) maintains

the level and has power in a wide range of experiments. It would be interesting to see if the

signal strength requirement can be improved through a more refined theoretical analysis.

3 Bootstrap based calibration of the WEC test statis-

tic

Here we develop a bootstrap based re-calibration procedure for practical implementation of

the WEC test under heterogeneity. Under sample size imbalance, our proposed calibration

procedure for the WEC test statistic first explores the larger sample Xn for heterogeneous

subgroups. To determine the number of such subgroups K in Xn, we use the prediction

strength approach of Tibshirani and Walther (2005), which gives an estimate K̂ of K.

The class membership of the baseline samples Xn is then determined using a K̂-means

algorithm. Denote by Ĵa ⊆ {1, 2, . . . , n} to be the subset of indices estimated to be in class

a by the K̂-means algorithm where 1 ≤ a ≤ K̂. Let na = |Ĵa| to be the cardinality of class

a and denote XĴa
= {Xi : i ∈ Ĵa} to be the corresponding subset of the baseline samples

estimated to be in class a. Note that Xn = {XĴa
: a = 1, 2, . . . , K̂} and

∑K̂
a=1 na = n. Our

calibration procedure then repeats the following three steps a large number of times:

1. Mixing proportions are randomly sampled from a K̂-dimensional constrained unit
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simplex SK̂ where SK̂ = {(λ1, . . . , λK̂) ∈ RK̂ : 0 ≤ λ
(b)
a ≤ min(na/m, 1), for 1 ≤ a ≤

K̂, and
∑K̂

a=1 λa = 1}.

2. For a given realization of the mixing proportions from SK̂ , surrogate baseline and

normal players samples are generated from F(FX).

3. The WEC test statistic is computed using the two samples obtained from step (2).

We now discuss these three steps below.

In step (1) the mixing proportions are sampled from a symmetric Dirichlet distribu-

tion of order K̂ whose support is the subset of the unit simplex satisfying 0 ≤ λ
(b)
a ≤

min(na/m, 1), for a = 1, . . . , K̂. Note that this constraint ensures that ⌈mλ
(b)
a ⌉ ≤ |Ĵa| = na,

which will be vital for constructing surrogate samples from F(FX) in step (2). Specific

details regarding the choice of the Dirichlet concentration parameter and the sampling

algorithm are provided in Section 3.1. For each b = 1, . . . , B, let (λ
(b)
1 , . . . , λ

(b)

K̂
) be a

random sample from SK̂ in step (1). Given these mixing weights, step (2) involves con-

structing surrogate baseline and normal players samples from F(FX) as follows: for each

a ∈ {1, . . . , K̂}, randomly sample ⌈mλ
(b)
a ⌉ elements without replacement from XĴa

. The

chosen elements constitute the surrogate normal players sample in class a and are denoted

by Y(b)
a = {X(b)

1 , . . . ,X
(b)

⌈mλ
(b)
a ⌉

}. The remaining na−⌈mλ
(b)
a ⌉ elements in XĴa

form the resid-

ual baseline sample in class a and are denoted X(b)
a = XĴa

\Y(b)
a , where \ denotes the usual

set difference operator. We combine these samples over the K̂ classes to get the surrogate

normal players sample as Y(b)
m = {Y(b)

a : a = 1, . . . , K̂} and the corresponding baseline

sample as X (b)
ñ = {X(b)

a : a = 1, . . . , K̂}, where ñ =
∑K̂

a=1(na − ⌈mλ
(b)
a ⌉). Finally, for step

(3) the bootstrapped samples in the bth round, X (b)
ñ and Y(b)

m (which are surrogates for Xn

and Ym, respectively), are used to compute the WEC test statistic R(b)
w := Rw(X (b)

ñ ,Y(b)
m ).

The bootstrap calibration procedure described above is summarized in Algorithm 1.

3.1 Implementation

Here we discuss several aspects related to the implementation and computational complex-

ity of the proposed calibration procedure presented in Algorithm 1.
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Algorithm 1: Bootstrap cut-off for a level α test using Rw(Xn,Ym)

Input: The parameters n,m and α. The baseline samples Xn, and the estimates K̂ and

{Ĵa : a = 1, . . . , K̂} from the K-means algorithm with na = |Ĵa|.

Output: The bootstrapped level α cutoff rn,m,α.

for b = 1, . . . , B do

STEP 1: Random sample (λ
(b)
1 , . . . , λ

(b)

K̂
) from the K̂-dimensional constrained unit

simplex SK̂ = {(λ1, . . . , λK̂) ∈ RK̂ : 0 ≤ λ
(b)
a ≤ min(na/m, 1), for 1 ≤ a ≤

K̂, and
∑K̂

a=1 λa = 1};

for a = 1, . . . , K̂ do

STEP 2: Draw a simple random sample Y(b)
a = {X(b)

1 , . . . ,X
(b)

⌈mλ
(b)
a ⌉

} without

replacement from XĴa
;

STEP 3: X(b)
a = XĴa

\Y(b)
a the baseline residual sample in class a;

Surrogate normal players sample: Y(b)
m = {Y(b)

a : a = 1, . . . , K̂};

Baseline sample: X (b)
ñ = {X(b)

a : a = 1, . . . , K̂};

STEP 4: Calculate R(b)
w := Rw(X (b)

ñ ,Y(b)
m );

STEP 5: Return rn,m,α = min{R(b)
w : 1

B

∑B
r=1 1{R

(r)
w ≥ R(b)

w } ≤ α}.

• Sampling scheme for the mixing proportions - Step 1 of Algorithm 1 requires

a random sample of the mixing proportions from SK̂ . We use an MCMC scheme

that relies on the hit-and-run algorithm of Smith (1984); Bélisle et al. (1993) to

simulate the mixing proportions from a symmetric Dirichlet distribution of order K̂

whose support is the subset of the unit simplex satisfying 0 ≤ λ
(b)
a ≤ min(na/m, 1),

for a = 1, . . . , K̂. The hit-and-run algorithm is a general purpose MCMC sampling

scheme that generates a sequence of points in a set by taking steps of random length

in randomly generated directions. This algorithm can be applied to any bounded

region in Euclidean space and can generate a sequence of points that asymptotically

approach a uniform distribution on open sets. See Smith (1996) for more details.

The function hitrun available in the R package polyapost (Meeden and Lazar,

2021) implements this sampling scheme in Step 1 of Algorithm 1.

• Choice of the Dirichlet concentration parameter - sampling from a symmetric
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K̂ dimensional Dirichlet distribution requires specifying the concentration parameter

β. The choice of β has important consequences as far as the underlying null distribu-

tion of the BWEC test statistic is concerned. For instance, when β is close to 0 the

mixing proportions are sampled primarily from the corners of SK̂ and the resulting

null distribution of the BWEC statistic comprises of the most extreme null cases,

resulting in a relatively large cutoff rn,m,α and a conservative testing procedure. This

is in contrast to the case when β = 1 which corresponds to sampling uniformly from

SK̂ . In Step 1 of Algorithm 1, we set β = 0.1 which provides a middle ground be-

tween conservatism and power since the underlying null distribution accommodates

both the extreme null cases as well as the modal null cases that arise when sampling

uniformly from SK̂ .

• Computational complexity - the computational complexity of our calibration

procedure depends on two key steps: (i) computation of the estimated number of

clusters K̂, and (ii) computation of the WEC test statistic over B bootstrap samples.

To estimate K, we use prediction strength along with a K−means algorithm where

the target number of clusters and the maximum number of iterations over which the

K−means algorithm runs before stopping are both fixed. Thus step (i) has O(nd)

complexity. The calculations in step (ii) can be distributed across the B bootstrap

samples but for each b ∈ {1, . . . , B} computation of the WEC test statistic requires

calculating the n × n distance matrix, constructing the MST on the pooled sample

{Xñ,Ym} and generating a random sample of size 1 from SK̂ . The computational

complexities of these three tasks are, respectively, O(n2d), O{(n−1) log n} andO(K̂3).

Therefore, the overall computational complexity of Algorithm 1 is O(n2d).

• Calibrating the GEC test statistic - while Algorithm 1 provides a calibration

approach for the WEC test statistic, it can also be used to obtain the level α cut-

off for the GEC test statistic for testing the composite null hypothesis of Equation

(7). To do that, we replace Rw(X (b)
ñ ,Y(b)

m ) in Algorithm 1 with Rg(X (b)
ñ ,Y(b)

m ) where

GEC test statistic is defined as Rg(Xn,Ym) = (R1 − µ1, R2 − µ2)Σ
−1(R1, R2)

T , with

µk = E(Rk), k = 1, 2 and Σ being the covariance matrix of (R1, R2)
T under the
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permutation null distribution (See Lemma 3.1 of Chen and Friedman (2017) for the

analytical expression of these quantities).

4 Numerical experiments

In this section we assess the numerical performance of the bootstrap calibrated WEC (BWEC)

and GEC (BGEC) tests against the following four competing testing procedures across a wide

range of simulation settings: (i) Edgecount (EC) test, (ii) Generalized edgecount (GEC)

test, (iii) Weighted edgecount (WEC) test, and (iv) TRUH test of Banerjee et al. (2020).

We set B = 500 in Algorithm 1 for both BWEC and BGEC tests. The R-package gTests

implements the three edge count tests using 5−MST on the pooled sample, which is a

recommended practical choice (Chen and Friedman, 2017). For TRUH, we use the code

available at Banerjee et al. (2020) with the default specification of τfc = 1. Note that

amongst the aforementioned four competing tests, only the TRUH statistic is designed to

test the composite null hypothesis of Equation (7), while the three variants of the edge

count test were developed to test the composite null hypothesis H0 : FX = FY against the

alternative H1 : FX ̸= FY .

In our numerical experiments, we simulate Xn and Ym from FX and FY , respectively,

and for each testing procedure, we report the proportion of rejections across 500 repetitions

of the composite null hypothesis test H0 : FY ∈ F(FX) vs H1 : FY /∈ F(FX) at 5% level of

significance. The R code that reproduces our simulation results is available in Supplement

B.

4.1 Experiment 1

We consider a setting where FX is the cdf of a d−dimensional Gaussian mixture distri-

bution with three components: FX = 0.3Nd(µ1,Σ1) + 0.3Nd(µ2,Σ2) + 0.4Nd(µ3,Σ3).

Here µ1 = 0d, µ2 = −31d, µ3 = −µ2, and ΣK , for K = 1, 2, 3, are d × d sym-

metric positive definite matrices with eigenvalues randomly generated from the interval

[1, 10]. We consider two scenarios for simulating Ym from FY . In Scenario I we let
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FY = 0.1Nd(µ1,Σ1) + 0.1Nd(µ2,Σ2) + 0.8Nd(µ3,Σ3). Thus, FY ∈ F(FX) since FY has

all the subpopulations present in FX but at different proportions. For Scenario II we con-

sider FY = 0.1Nd(µ1,Σ1) + 0.1Nd(µ2,Σ2) + 0.8Nd(µ3, 0.25Σ3). The third component in

the above mixture differs with respect to its scale when compared to the third component

of FX . So this setting presents a scenario where FY /∈ F(FX) and the composite null H0

is not true.

Table 1: Rejection rates at 5% level of significance: Experiment 1 and Scenario I wherein H0 :

FY ∈ F(FX) is true.
n = 500, m = 50 n = 2000, m = 200

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
EC test 0.224 0.144 0.134 0.710 0.364 0.270
GEC test 0.568 0.592 0.618 0.984 0.986 0.992
WEC test 0.724 0.738 0.750 0.998 0.994 0.998
TRUH test 0.028 0.030 0.020 0.020 0.018 0.008
BGEC test 0.000 0.000 0.038 0.000 0.000 0.010
BWEC test 0.000 0.000 0.040 0.000 0.000 0.010

Table 2: Rejection rates at 5% level of significance: Experiment 1 and Scenario II wherein

H0 : FY ∈ F(FX) is false.
n = 500, m = 50 n = 2000, m = 200

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
EC test 0.310 0.000 0.000 1.000 0.000 0.000
GEC test 1.000 1.000 1.000 1.000 1.000 1.000
WEC test 1.000 1.000 1.000 1.000 1.000 1.000
TRUH test 0.002 0.000 0.000 0.000 0.000 0.000
BGEC test 0.980 1.000 1.000 1.000 1.000 1.000
BWEC test 0.958 1.000 1.000 0.998 1.000 1.000

Table 1 reports the rejection rates for Scenario I for varying (n,m, d). We note that

TRUH, BWEC and BGEC return rejection rates that are below the prespecified 0.05 level and

are conservative across the six testing scenarios considered in Table 1. The three edge count

tests, on the other hand, have substantially higher rejection rates. This is not surprising as

the three edge count statistics are designed to test the null hypothesis FX = FY as opposed

to the null hypothesis of Equation (7). For Scenario II, the rejection rates are reported in

Table 2 and they reveal that with the exception of TRUH and the EC test, all other competing

testing procedures are powerful in detecting departures from H0 : FY ∈ F(FX). When d
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is moderately high, the EC test, in particular, is known to have low power under sample

size imbalance and the presence of scale alternatives exacerbates this problem. The WEC

and GEC tests are designed to address these weaknesses of the EC test, and from Table 2 we

observe substantially higher power for these two tests compared to the original EC test. The

BWEC and BGEC tests, while conservative, continue to be powerful in detecting departures

from the composite null hypothesis of Equation (7).

The performance of TRUH test under scenarios I and II is worth noting. From tables

1 and 2, we observe that while TRUH is conservative for testing H0 : FY ∈ F(FX) versus

H1 : FY /∈ F(FX), it is considerably less powerful than BGEC and BWEC tests for detecting

departures from H0. In fact, across all our simulation settings TRUH, while conservative, is

relatively less powerful than BGEC and BWEC tests. Such a behavior of TRUH is potentially

due to its inability to detect departures from H0 when the components of FY and FX differ

only with respect to their scales.

4.2 Experiment 2

In the setting of Experiment 2, we let FX and FY to include non-Gaussian components.

So we let FX = 0.5 Gamd(shape = 51d, rate = 1d,Σ1) + 0.5 Expd(rate = 1d,Σ2), where

Gamd and Expd are d−dimensional Gamma and Exponential distributions. The multi-

variate Gamma and Exponential distributions are constructed using a Gaussian copula

and the R-package lcmix (Dvorkin, 2012; Xue-Kun Song, 2000) allows sampling from

these distributions. The correlation matrices Σ1 and Σ2 are tapering matrices with pos-

itive and negative autocorrelations as follows: (Σ1)ij = 0.7|i−j| and (Σ2)ij = −0.9|i−j|

for 1 ≤ i, j ≤ d. For simulating Yn from FY , we consider two scenarios. In Scenario

I, FY = 0.05 Gamd(shape = 51d, rate = 1d,Σ1) + 0.95 Expd(rate = 1d,Σ2). In this

setting FY has both the components of FX but with different mixing proportions. So

H0 : FY ∈ F(FX) is true, however this is a particularly challenging setting as a major-

ity of the samples from FY arise from only one of the components of FX . In Scenario

II, FY = 0.8 Gamd(shape = 51d, rate = 1d,Σ1) + 0.2 Expd(rate = 1.51d, 0.25Σ3) where

(Σ3)ij = 0.9|i−j|. In this setting, the second component of FY differs from the second
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component of FX with respect to their correlation matrices and rate parameters, and so

H0 : FY ∈ F(FX) is not true.

Table 3: Rejection rates at 5% level of significance: Experiment 2 and Scenario I wherein H0 :

FY ∈ F(FX) is true.
n = 500, m = 50 n = 2000, m = 200

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
EC test 0.418 0.312 0.258 0.944 0.798 0.684
GEC test 0.812 0.810 0.774 1.000 1.000 1.000
WEC test 0.928 0.908 0.912 1.000 1.000 1.000
TRUH test 0.000 0.000 0.000 0.000 0.000 0.000
BGEC test 0.004 0.006 0.002 0.000 0.000 0.000
BWEC test 0.002 0.004 0.000 0.000 0.000 0.000

Table 3 reports the rejection rates for Scenario I. We find that both TRUH and the

bootstrapped WEC and GEC tests support H0 : FY ∈ F(FX) while the three edge count tests

overwhelmingly reject H0, which is an incorrect decision under Scenario I. Table 4 reports

Table 4: Rejection rates at 5% level of significance: Experiment 2 and Scenario II wherein

H0 : FY ∈ F(FX) is false.
n = 500, m = 25 n = 2000, m = 100

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
EC test 0.424 0.250 0.096 0.978 0.926 0.806
GEC test 0.724 0.822 0.838 1.000 1.000 1.000
WEC test 0.824 0.886 0.904 1.000 1.000 1.000
TRUH test 0.050 0.040 0.036 0.026 0.050 0.024
BGEC test 0.220 0.400 0.450 0.242 0.992 1.000
BWEC test 0.228 0.394 0.434 0.244 0.992 1.000

the rejection rates for Scenario II when the sample size imbalance is 0.05 as opposed to

0.1 in all of the earlier settings. Detecting departures from H0 under such imbalance is

a difficult task as a majority of the samples from FY arise from the first component of

FX and the competing testing procedures must rely on a few observations to reject H0

in Scenario II. Table 4 reveals that the rejection rates of the three edge count tests and

the proposed BWEC, BGEC tests are substantially higher than TRUH. While the edge count

tests have the highest rejection rates across both scenarios I and II, the rejection rates of

BWEC, BGEC tests improve as the sample size increases in Table 4. The two scenarios under

Experiment 2 reveal that the bootstrapped calibrated WEC and GEC tests are conservative
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than edge count tests for testing the composite null hypothesis H0 : FY ∈ F(FX) and more

powerful than TRUH for detecting departures from H0.

4.3 Experiment 3

We consider a setting where the samples Xn and Ym exhibit zero inflation across the d di-

mensions. Denote δ{0} = (δ1{0}, . . . , δd{0}) denote the d−dimensional vector of point masses

at 0. We let FX = pδ{0}+(1d−p)
{
0.5 F1+0.5 F2

}
, where F1 = Gamd(shape = 51d, rate =

1d,Σ1), F2 = Expd(rate = 1d,Σ2) and p = (p1, . . . , pd) is the vector of probabilities that

regulate the differential zero inflation across the d dimensions. We sample the first 0.8d

coordinates of p independently from Unif(0.5, 0.6), and the remaining 0.2d coordinates are

set to 0. So the first 0.8d coordinates of FX encounter zero inflation. Finally, Σ1,Σ2 are as

described in Experiment 2 (Section 4.2) and Xn are sampled from FX using the R-package

lcmix. For simulating Ym from FY , we consider the following two scenarios: In Scenario I

FY = pδ{0} + (1d − p) {0.2 F1 + 0.8 F2} and so H0 : FY ∈ F(FX) is true. For Scenario

II, FY = qδ{0} + (1d − q) {0.5 Gamd(shape = 51d, rate = 1.51d,Σ1) + 0.5 F2}, where the

first 0.8d coordinates of q are set to 0.3 and the remaining 0.2d coordinates to 0. Apart

from the differential zero inflation between FY and FX , the rate parameter of the first

component of FY is different from that of F1. So in this scenario, G /∈ F(F0) and H0

is false. Table 5 reports the rejection rates for the competing tests under Scenario I and

Table 5: Rejection rates at 5% level of significance: Experiment 3 and Scenario I wherein H0 :

FY ∈ F(FX) is true.
n = 500, m = 50 n = 2000, m = 200

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
EC test 0.070 0.074 0.028 0.302 0.140 0.102
GEC test 0.258 0.288 0.266 0.624 0.680 0.752
WEC test 0.352 0.406 0.390 0.790 0.830 0.880
TRUH test 0.002 0.000 0.000 0.000 0.000 0.000
BGEC test 0.050 0.000 0.000 0.000 0.000 0.000
BWEC test 0.056 0.000 0.000 0.000 0.000 0.000

reveals that under the setting of zero inflation, the WEC and GEC tests are not conservative.

TRUH, BWEC and BGEC tests, on the other hand, report rejection rates that are either at
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or marginally above the prespecified 0.05 level, thus demonstrating their conservatism in

testing H0 : FY ∈ F(FX) vs H1 : FY /∈ F(FX). In Table 6 we report the rejection rates for

Table 6: Rejection rates at 5% level of significance: Experiment 3 and Scenario II wherein

H0 : FY ∈ F(FX) is false.
n = 500, m = 10 n = 2000, m = 40

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
EC test 0.106 0.000 0.000 0.426 0.000 0.000
GEC test 0.250 0.604 0.878 0.748 0.986 1.000
WEC test 0.344 0.526 0.704 0.818 0.980 0.998
TRUH test 0.012 0.004 0.012 0.008 0.000 0.000
BGEC test 0.146 0.448 0.794 0.234 0.894 0.998
BWEC test 0.158 0.328 0.554 0.238 0.856 0.986

Scenario II when the sample size imbalance is 0.02 as opposed to 0.1 in Scenario I. Under

this challenging setting, we find that BWEC and BGEC tests are more powerful than TRUH and

demonstrate competitive power to WEC and GEC tests when the sample sizes are relatively

large. Table 5 gives the impression that at d = 30, the EC test is conservative for testing

H0 under Scenario I. However, at such moderately high dimensions and under unequal

sample sizes, the edgecount test statistic suffers from variance boosting and demonstrates

low power, which explains its relatively low rejection rates in both tables 5 and 6.

In Section C of Supplement A, we present additional numerical experiments while a real

data application for detecting addictive behaviors in online gaming is discussed in Section

D.

5 Discussion

The multivariate samples from modern gargantuan datasets often involve heterogeneity

and direct application of existing nonparametric two-sample tests, such as the edge count

tests, may lead to incorrect scientific decisions if they are not properly calibrated for the

underlying latent heterogeneity. In this article, we demonstrate that under a composite

null hypothesis, that allows the possibility that two samples may originate from mixture

distributions that have the same mixing components but possibly different mixing weights,

the weighted edge count test can be re-calibrated to obtain a test which is asymptotically
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powerful for general alternatives. For practical implementation of this test, we develop a

bootstrap calibrated weighted edge count test and demonstrate its excellent finite sample

properties across a wide range of simulation studies. On a real world video game dataset, we

use our testing procedure to detect addictive playing behavior and find that in comparison

to players who exhibit normal playing behavior, players who login late to the game exhibit

aberrant behavior while players who login early do not, thus confirming some of the findings

in existing literature related to video game addiction.

Our future research will be directed towards extending the proposed testing framework

in two directions. First, it will be interesting to develop an extension of the kernel two-

sample tests of Gretton et al. (2007) to the heterogeneous setting and devise an efficient

re-calibration procedure for these tests for consistent two-sample testing under the com-

posite null hypothesis of Equation (7). Second, for dealing with samples that involve high

dimensional features, such as single cell RNA-seq data where d ∼ 104, or data on consumer

preferences for high dimensional product attributes, we will be interested in developing

an extension of our testing procedure that allows incorporating such data-types into our

heterogeneous two-sample testing framework.
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Aaditya Ramdas, Nicolás Garćıa Trillos, and Marco Cuturi. On wasserstein two-sample
testing and related families of nonparametric tests. Entropy, 19(2):47, 2017. 2

Paul R Rosenbaum. An exact distribution-free test comparing two multivariate distribu-
tions based on adjacency. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(4):515–530, 2005. 2, 12

Peter E Rossi, Greg M Allenby, and Rob McCulloch. Bayesian statistics and marketing.
John Wiley & Sons, 2012. 3

Russell L Rothman, Ryan Housam, Hilary Weiss, Dianne Davis, Rebecca Gregory, Tebeb
Gebretsadik, Ayumi Shintani, and Tom A Elasy. Patient understanding of food labels:
the role of literacy and numeracy. American journal of preventive medicine, 31(5):391–
398, 2006. 2

Mark F Schilling. Multivariate two-sample tests based on nearest neighbors. Journal of
the American Statistical Association, 81(395):799–806, 1986. 2, 12

31

https://cran.r-project.org/web/packages/polyapost/index.html
https://cran.r-project.org/web/packages/polyapost/index.html


Nandini Sen, Gourab Mukherjee, Adrish Sen, Sean C Bendall, Phillip Sung, Garry P Nolan,
and Ann M Arvin. Single-cell mass cytometry analysis of human tonsil t cell remodeling
by varicella zoster virus. Cell reports, 8(2):633–645, 2014. 9

Nandini Sen, Gourab Mukherjee, and Ann M Arvin. Single cell mass cytometry reveals
remodeling of human t cell phenotypes by varicella zoster virus. Methods, 90:85–94, 2015.
9

Hongjian Shi, Mathias Drton, and Fang Han. Distribution-free consistent independence
tests via center-outward ranks and signs. Journal of the American Statistical Association,
pages 1–16, 2020a. 3

Hongjian Shi, Marc Hallin, Mathias Drton, and Fang Han. On universally consis-
tent and fully distribution-free rank tests of vector independence. arXiv preprint
arXiv:2007.02186, 2020b. 3

Xiaoping Shi, Yuehua Wu, and Calyampudi Radhakrishna Rao. Consistent and powerful
graph-based change-point test for high-dimensional data. Proceedings of the National
Academy of Sciences, 114(15):3873–3878, 2017. 2

Robert L Smith. Efficient monte carlo procedures for generating points uniformly dis-
tributed over bounded regions. Operations Research, 32(6):1296–1308, 1984. 19

Robert L Smith. The hit-and-run sampler: a globally reaching markov chain sampler for
generating arbitrary multivariate distributions. In Proceedings of the 28th conference on
Winter simulation, pages 260–264, 1996. 19
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This supplement is organized as follows: Section A provides the proof of Propo-
sition 1, Section B includes the simulation scheme for figures 1 and 2, Section
C presents additional simulation experiments for comparing the performances
of TRUH, BWEC and BGEC tests, and Section D provides a real data application.

A Proof of Proposition 1

Recall from Equation (9) the definition of the Henze-Penrose divergence:

δρ(fX , fY ) =

∫
S

ρf 2
X(x) + f 2

Y (x)

(ρfX(x) + fY (x))
dx.

We begin with the following lemma (recall the definition of γ from Proposition 1):

Lemma 1. Under the assumptions of Proposition 1, for any fY ∈ F(fX),

δρ(fX , fY ) < 1 +
(1 + ρ)K2

Lρ2
= 1 + γ.

Proof: Define the function rρ : R2
≥0 → R≥0 as:

rρ(s, t) =
ρs2 + t2

(ρs+ t)
.

Note that δρ(fX , fY ) =
∫
S
rρ(fX(x), fY (x))dx. By a Taylor series expansion of the function

t → rρ(fX(x), t) we can write,

rρ(fX(x), fY (x))− rρ(fX(x), fX(x))

=
∂

∂t
rρ(fX(x), t) |t=fX(x) (fY (x)− fX(x)) +

(fY (x)− fX(x))2

2

∂2

∂t2
rρ(fX(x), t) |t=ζx , (10)

for some ζx ∈ [fX(x) ∧ fY (x), fX(x) ∨ fY (x)]. Note that

∂

∂t
rρ(fX(x), t) =

t2 + 2ρfX(x)t− ρfX(x)2

(ρfX(x) + t)2
and

∂2

∂2t
rρ(s, t) =

2ρ(1 + ρ)fX(x)2

(ρfX(x) + t)3
.

This implies, ∂
∂t
rρ(fX(x), t) |t=fX(x)=

1
1+ρ

:= cρ. Then, using rρ(fX(x), fX(x)) = fX(x)

Equation (10) simplifies to

rρ(fX(x), fY (x)) = fX(x) + cρ(fY (x)− fX(x)) + (fY (x)− fX(x))2
ρ(1 + ρ)f 2

X(x)

(ρfX(x) + ζx)3
.

1



Integrating both sides over x ∈ S and using
∫
S
fXdx =

∫
S
fY (x)dx = 1, gives

δρ(fX , fY ) = 1 + ρ(1 + ρ)

∫
S

(fY (x)− fX(x))2
f 2
X(x)

(ρfX(x) + ζx)3
dx

≤ 1 +
1 + ρ

ρ2

∫
S

(fY (x)− fX(x))2

fX(x)
dx, (11)

where the last step uses ρfX(x) + ζx ≥ ρfX(x). Now, suppose fY ∈ F(fX), that is,

fY =
∑K

a=1 λafa(x), for some λ1, λ2, . . . , λK ∈ [0, 1] such that
∑K

a=1 λa = 1. Also, recall

from Equation (5) that fX =
∑K

a=1wafa(x). Then for fY ∈ F(fX) we have from Equation
(11),

δρ(fX , fY ) = 1 +
1 + ρ

ρ2

∫
S

(
∑K

a=1(λa − wa)fa(x))
2∑K

a=1 wafa(x)
dx

≤ 1 +
(1 + ρ)K

ρ2

∫
S

∑K
a=1(λa − wa)

2f 2
a (x)∑K

a=1wafa(x)
dx, (12)

where the last step follows from the Cauchy-Schwarz inequality. Note that by Assumption
1,

K∑
a=1

wafa(x) > L
K∑
a=1

fa(x).

Moreover,
K∑
a=1

(λa − wa)
2f 2

a (x) ≤
K∑
a=1

f 2
a (x) ≤

(
K∑
a=1

fa(x)

)2

.

Using the above two bounds in Equation (12) we have,

δρ(fX , fY ) < 1 +
(1 + ρ)K

Lρ2

∫
S

K∑
a=1

fa(x)dx = 1 +
(1 + ρ)K2

Lρ2
.

This completes the proof of Lemma 1.
To complete the proof of the first statement in Proposition 1 recall from Equation (8)

that for fY ∈ F(fX),

Rw(Xn,Ym)
P→ ℓρ

(1 + ρ)2
· δρ(fX , fY ) <

ℓρ

(1 + ρ)2

(
1 +

(1 + ρ)K2

Lρ2

)
=

ℓρ

(1 + ρ)2
(1 + γ) .

This implies,

lim
m,n→∞

PfX ,fY

(
Rw(Xn,Ym) ≥

ℓρ

(1 + ρ)2
(1 + γ)

)
= 0,

for fY ∈ F(fX).
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For proving the second statement in Proposition 1, first note that by Lemma 1, δρ(fX , fY ) >
1 + γ, implies fY /∈ F(fX). Then

Rw(Xn,Ym)
P→ ℓρ

(1 + ρ)2
· δρ(fX , fY ) >

ℓρ

(1 + ρ)2
(1 + γ).

Therefore,

lim
m,n→∞

PfX ,fY

(
Rw(Xn,Ym) ≥

ℓρ

(1 + ρ)2
(1 + γ)

)
= 1.

This completes the proof of Proposition 1. □

B Details for figures 1 and 2

We next describe the two simulation settings that were discussed in Section 1.1 under
examples 1, 2 and figures 1, 2. For Example 1 and Figure 1, we fix n = 2000, m =
200, d = 2 and let FX =

∑4
k=1 wkNd(µk, Id) where wk = 0.25 for k = 1, . . . , 4, µ1 =

(10, 10), µ2 = (20, 10), µ3 = (20, 20) and µ4 = (10, 20). We consider three scenarios for
simulating Ym from FY . For Case I, we let FY = FX and ,thus, FY ∈ F(FX) since FY

has all the subpopulations present in FX . In Case II, we consider FY = 0.1Nd(µ1, Id) +
0.8Nd(µ2, Id) + 0.1Nd(µ3, Id). So, FY ∈ F(FX) since FY has all the subpopulations
present in FX but at different proportions. Finally, for Case III we let FY = Nd(µ5, Id)
where µ5 = (25, 5). This setting presents a scenario where FY /∈ F(FX) and the composite
null H0 is not true. Table 7 reports the rejection rates for testing H0 : FY ∈ F(FX) vs H1 :
FY /∈ F(FX) under the three scenarios described in Example 1 and Figure 1. We note that
the three edge count tests cannot distinguish Case II from Case III and infer FY /∈ F(FX)
for both these cases.

Table 7: Rejection rates at 5% level of significance: Example 1 and Figure 1 in Section 1.1.
n = 2000, m = 200, d = 2

Method Left panel Center panel Right panel
Case I - FY ∈ F(FX) Case II - FY ∈ F(FX) Case III - FY /∈ F(FX)

EC test 0.048 1.000 1.000
GEC test 0.032 1.000 1.000
WEC test 0.056 1.000 1.000
TRUH test 0.050 0.068 1.000
BGEC test 0.000 0.000 1.000
BWEC test 0.000 0.000 1.000

For Example 2 and Figure 2, we take d = 3 and let FX =
∑3

k=1wkNd(µk, Id) where w1 =
w2 = 0.3, w3 = 0.4, µ1 = (0, 0, 0), µ2 = (0,−4,−4), and µ3 = (4,−2,−3). We consider
three scenarios for simulating Ym from FY . In Case I, we let FY = FX and, thus, FY ∈
F(FX). For Case II, we consider FY = 0.8Nd(µ1, Id)+0.1Nd(µ2, Id)+0.1Nd(µ3, Id). So,
FY ∈ F(FX) since FY has all the subpopulations present in FX but at different proportions.
In Case III, we let FY = 0.8Nd(µ1,Σd)+0.1Nd(µ2,Σd)+0.1Nd(µ3,Σd) whereΣd = 0.1Id.
This setting presents a scenario where FY /∈ F(FX) since the components of FY differ from
the components of FX with respect to their scale parameters. Table 8 reports the rejection
rates for testing H0 : FY ∈ F(FX) vs H1 : FY /∈ F(FX) under the three scenarios
described in Example 2 and Figure 2. We continue to note that the three edge count tests
cannot distinguish Case II from Case III and infer FY /∈ F(FX) for both these cases. This
suggests that the edge count tests are unable to tackle subpopulation level heterogeneity.
Additionally, the TRUH test incorrectly infers FY ∈ F(FX) for Case III, thus demonstrating

3



low power for detecting departures from H0 when the components of FY and FX differ
only with respect to their scales.

Table 8: Rejection rates at 5% level of significance: Example 2 and Figure 2 in Section 1.1.
n = 2000, m = 200, d = 3

Method Left panel Center panel Right panel
Case I - FY ∈ F(FX) Case II - FY ∈ F(FX) Case III - FY /∈ F(FX)

EC test 0.068 1.000 1.000
GEC test 0.068 1.000 1.000
WEC test 0.064 1.000 1.000
TRUH test 0.012 0.018 0.004
BGEC test 0.000 0.000 1.000
BWEC test 0.000 0.000 1.000

C Additional numerical experiments

Section 4 reports three simulation experiments where the TRUH test of Banerjee et al. (2020)
is relatively less powerful than the BWEC and BGEC tests. Here, we compare the performances
of TRUH, BWEC and BGEC tests on settings where H0 is false and FY includes atleast one
component distribution that substantially differs from the component distributions of FX
with respect to its location. Such a scenario represents a favorable setting for TRUH which is
adept at detecting deviations in location under the composite null hypothesis of Equation
(7). We consider the following three simulation settings:

• Scenario I: This setting is borrowed from Experiment 1 of Banerjee et al. (2020). Here
FX is same as Experiment 1 of Section 4.1 and FY = 0.5Nd(µ1,Σ1)+0.5Nd(µ4,Σ4),
where Σ4 is a d dimensional positive definite matrix generated independently of
Σ1,Σ2,Σ3, and µ4 = 4ϵd, where ϵd is a vector of d independent Rademacher random
variables.

• Scenario II: This setting is borrowed from Experiment 3 of Banerjee et al. (2020). Here
FX is same as Experiment 3 of Section 4.3 and FY = qδ{0}+(1d−q) {0.5 Gamd(shape =
51d, rate = 0.51d,Σ1) + 0.5 Expd(rate = 1d,Σ2)}, where the first 0.8d coordinates of
q are set to 0.3 and the remaining 0.2d coordinates to 0.

• Scenario III: FX is same as Experiment 2 of Section 4.2 and FY = 0.3 Gamd(shape =
101d, rate = 1d,Σ1) + 0.7 Expd(rate = 1d,Σ2)

Table 9: Rejection rates at 5% level of significance: Experiment 4 and Scenario I.
n = 500, m = 50 n = 2000, m = 200

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
TRUH test 0.930 1.000 1.000 1.000 1.000 1.000
BGEC test 0.902 1.000 1.000 1.000 1.000 1.000
BWEC test 0.902 1.000 1.000 1.000 1.000 1.000

Tables 9–11 report the rejections rates at 5% level of significance. For Scenario I we
find that TRUH, BGEC and BWEC have comparable power across all six settings in Table 9.
Scenarios II and III, in contrast, represent difficult settings involving zero inflation across
the d dimensions and sample size imbalance of 0.02 as opposed to 0.1 in Scenario I. For
these two scenarios, tables 10 and 11 reveal that TRUH dominates BGEC and BWEC in power
when n is small. For large n, however, the proposed bootstrapped edge count tests are
competitive to TRUH.
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Table 10: Rejection rates at 5% level of significance: Experiment 4 and Scenario II.
n = 500, m = 10 n = 2000, m = 40

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
TRUH test 0.790 0.934 0.978 0.972 1.000 1.000
BGEC test 0.472 0.522 0.584 0.882 1.000 0.998
BWEC test 0.314 0.470 0.592 0.756 0.984 0.998

Table 11: Rejection rates at 5% level of significance: Experiment 4 and Scenario III.
n = 500, m = 10 n = 2000, m = 40

Method d = 5 d = 15 d = 30 d = 5 d = 15 d = 30
TRUH test 0.300 0.550 0.756 0.356 0.776 0.976
BGEC test 0.208 0.356 0.440 0.228 0.932 0.992
BWEC test 0.200 0.348 0.438 0.226 0.934 0.992

D Detecting player addiction in online video games

Online video game addiction is a phenomenon wherein a small subgroup of players are in-
volved in excessive and compulsive use of these games that may ultimately result in social
and/or emotional problems (Lemmens et al., 2009). In fact, game addiction was included
as a disorder in the Diagnostic and Statistical Manual for Mental Disorders (see DSM-5-TR
from the American Psychiatric Association2) because of an increased risk of clinically sig-
nificant problems associated with online gaming (Petry et al., 2014). Therefore, for game
managers identifying and regulating addicted players is critical because incorrectly reward-
ing addiction via promotions may lead to high reputation risk for the gaming platform.

Extant research finds that players who login late at night exhibit a higher tendency
towards game addiction (Lee and Kim, 2017) and until recently South Korea had prohibited
young players from playing online video games between midnight and 6:00 AM. In this
application, we rely on an anonymized data available from a large video game company
in Asia to test whether players who login after midnight exhibit deviant playing behavior
when compared to players with baseline gaming behavior. Our data hold player level
information for d = 16 playing characteristics, such as player’s game level, number of
friends that they have, number of strategic missions that they completed in the game, etc
across 7 days. Table 12 provides a description of these characteristics. For each day, we

Table 12: Data dictionary
Sl no. Variable name Description
1 game level player’s level in the game
2 pve quests no. of quests a player accomplished in Player Versus Environment (PVE) mode
3 pve mission no. of missions a player accomplished in PVE mode
4 pve time player’s daily time spent in playing PVE mode in hours
5 num game no. of PVE game rounds a player played in a day
6 purch count no. of purchases a player made in a day
7 frnd count no. of friends a player has
8 frnd level mean level of a player’s friends
9 numfrnd purch no. of times of a player’s friends made purchases
10 valfrnd purch monetary value of all purchases made by a player’s friends
11 numfrnd played no. of friends a player played with during game sessions
12 numfrnd games no. of game sessions a player played with her friends
13 tenure no. of days a player has been associated with the game
14 guild tenure no. of days a player has been associated with a guild
15 numguild played no. of guild members a player played with
16 numguild games no. of game sessions a player played with guild members

have access to the following three samples; a sample of players who login post midnight

2https://psychiatry.org/psychiatrists/practice/dsm
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(Late) Y1 = {Y11, . . . ,Y1m1}, an independent sample of players who login between 8 AM
- 9 AM local time (Early), Y2 = {Y21, . . . ,Y2m2} and an independent sample of players
who exhibit normal playing behavior (Baseline) Xn = {X1, . . . ,Xn}. Suppose Y1 are a

random sample from a distribution with CDF F
(1)
Y1

and Y2 are a random sample from a

distribution with CDF F
(2)
Y2

. We consider the following two hypothesis testing problems:
(i) whether the playing behavior of Late players is different from Baseline players, H01 :

F
(1)
Y1

∈ F(FX) vs H11 : F
(1)
Y1

/∈ F(FX), and (ii) whether the playing behavior of Early

players is different from Baseline players, H02 : F
(2)
Y2

∈ F(FX) vs H12 : F
(2)
Y2

/∈ F(FX).
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Figure 3: Box plot of the 16 playing characteristics on day 5. Data are arcsinh transformed and
the variable pve time is reported in hours. Here m1 = 143, m2 = 216 and n = 2, 340. See Table
12 for a description of these characteristics.

Figure 3 provides a box-plot of the 16 playing characteristics on day 5. It reveals that
Late players seem to play relatively larger number of games (num games), spend more time
playing with the game environment (pve quests and pve time) and are relatively more en-
gaged with their friends and social connections within the game (numfrnd-games,numfrnd-
played, numguild-played) than their counterparts in Baseline. The Early players, on the
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other hand, do not exhibit such stark contrasts in their playing behavior when compared to
the Baseline. A t-SNE plot (Van der Maaten and Hinton, 2008) of the d = 16 dimensional
data in figures 4 and 5 provide further insights into the behavior of the Late and Early
players. For both days 1 and 4, these figures exhibit the underlying heterogeneity in the
Baseline player sample. Moreover, the Late sample occupies a distinct position in the
two dimensional space that is away from the bulk of the Baseline sample.

Late Baseline Early Baseline

Figure 4: A t-SNE plot of the data for Day 1. The d = 16 playing attributes are projected to a
two dimensional space.

Late Baseline Early Baseline

Figure 5: A t-SNE plot of the data for Day 4. The d = 16 playing attributes are projected to a
two dimensional space.

Tables 13 and 14 report the p−values for the two testing problems. In Table 13, all

competing tests, with the exception of TRUH, reject the null hypothesis H01 : F
(1)
Y1

∈ F(FX)
across the 7 days and conclude that the playing behavior of the Late players is significantly
different from Baseline. This corroborates the visual evidence found in figures 3, 4 and
5 that indeed the players who login late differ from their counterparts in Baseline as
far as these 16 playing characteristics are concerned. TRUH, on the other hand, does not
provide such a consistent picture across the seven days and fails to reject H01 in four out
of the seven days. The numerical experiments of Section 4 reveal that TRUH is relatively
less powerful than BGEC and BWEC tests in detecting departures from H01 and the result
in Table 13 is potentially another empirical evidence in that direction. The p−values
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Table 13: p−values for testing H01 : F
(1)
Y1

∈ F(FX) vs H11 : F
(1)
Y1

/∈ F(FX)
Day n m1 EC test GEC test WEC test TRUH BGEC test BWEC test
1 2, 558 133 < 10−3 < 10−3 < 10−3 1.000 < 10−3 < 10−3

2 2, 374 103 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

3 2, 073 163 < 10−3 < 10−3 < 10−3 1.000 < 10−3 < 10−3

4 2, 291 126 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

5 2, 340 143 < 10−3 < 10−3 < 10−3 1.000 < 10−3 < 10−3

6 2, 560 72 < 10−3 < 10−3 < 10−3 1.000 < 10−3 < 10−3

7 2, 268 140 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Table 14: p−values for testing H02 : F
(2)
Y2

∈ F(FX) vs H12 : F
(2)
Y2

/∈ F(FX)
Day n m2 EC test GEC test WEC test TRUH BGEC test BWEC test
1 2, 558 203 0.702 < 10−3 < 10−3 0.525 0.708 0.762
2 2, 374 223 0.193 < 10−3 < 10−3 0.995 0.960 0.960
3 2, 073 171 0.864 0.001 0.002 0.715 0.977 0.985
4 2, 291 232 < 10−3 < 10−3 < 10−3 0.795 0.773 0.797
5 2, 340 216 < 10−3 < 10−3 < 10−3 0.105 0.847 0.873
6 2, 560 177 0.487 < 10−3 < 10−3 0.890 0.880 0.888
7 2, 268 199 0.708 < 10−3 < 10−3 0.855 0.793 0.820

reported in Table 14 exhibit an interesting pattern for the testing problem H02 : F
(2)
Y2

∈
F(FX) vs H12 : F

(2)
Y2

/∈ F(FX). We note that TRUH, BWEC and BGEC tests fail to reject H02

across the seven days, while the decisions from GEC and WEC tests are exactly the opposite,
potentially demonstrating the non-conservativeness of these tests for testing the composite
null hypothesis H02. On five out of the seven days, EC test fails to reject H02 and gives the
impression that it is conservative for testing H02. However, and as observed in Section 4,
at moderately high dimensions the EC test statistic suffers from variance boosting under
sample size imbalance and demonstrates low power.
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