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Massively Multiplayer Online Role Playing Games (MMORPGs) offer a
unique blend of a personalized gaming experience and a platform for forging
social connections. Managers of these digital products rely on predictions of
key player responses, such as playing time and purchase propensity, to de-
sign timely interventions for promoting, engaging and monetizing their play-
ing base. However, the longitudinal data associated with these MMORPGs
not only exhibit a large set of potential predictors to choose from but of-
ten present several other distinctive characteristics that pose significant chal-
lenges in developing flexible statistical algorithms that can generate efficient
predictions of future player activities. For instance, the existence of virtual
communities or ‘guilds’ in these games complicate prediction since play-
ers who are part of the same guild have correlated behaviors and the guilds
themselves evolve over time and, thus, have a dynamic effect on the future
playing behavior of its members. In this paper, we develop a Crossed Ran-
dom Effects Joint Modeling (CREJM) framework for analyzing correlated
player responses in MMORPGs. Contrary to existing methods that assume
player independence, CREJM is flexible enough to incorporate both player
dependence as well as time varying guild effects on the future playing behav-
ior of the guild members. On a large-scale data from a popular MMORPG,
CREJM conducts simultaneous selection of fixed and random effects in high-
dimensional penalized multivariate mixed models. We study the asymptotic
properties of the variable selection procedure in CREJM and establish its se-
lection consistency. Besides providing superior predictions of daily playing
time and purchase propensity over competing methods, CREJM also predicts
player correlations within each guild which are valuable for optimizing future
promotional and reward policies for these virtual communities.

1. Introduction. The online video game industry is revolutionizing the space of modern
entertainment and social networking. As of August 2020, an estimated 3.1 billion people,
which constitutes around 40% of the world population were playing video games (DFCIn-
telligence, 2020). A particular genre of video games that have seen very high levels of in-
terest from users in recent years are the Massively Multiplayer Online Role Playing Games
(MMORPGs). MMORPGs have been one of the biggest drivers of growth in the video games
sector and are projected to grow at a historic rate of 9.22% between 2019 - 2023 versus 6.84%
between 2015 -2019 (CISION, 2020). Players prefer MMORPGs over single player games
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for the social experience that they offer (Jin and Sun, 2015) and facilitated by the in-game
chatting and video systems, players can make friends, form teams and collaborate on gaming
tasks in these MMORPGs. Apart from the friendship networks, social connections in these
games are achieved through guilds which are groups of players that have a shared interest.
Guild, also known as ‘clan’, is a virtual community with hierarchical ranks that allow players
to interact with each other and each player is a member of only one guild at any time point.
Consequently, players nested within the same guild have correlated playing behavior. More-
over, the guilds themselves are dynamic communities that evolve over time as guild leaders
recruit new members, existing members switch guilds, and the in-game activity and spending
of guild members change over time (see panel (b) of Figure 3 in Section 2).

These phenomena create a highly dynamic environment which poses significant challenges
in developing personalized promotional and monetization strategies for MMORPGs. For in-
stance, game managers rely on predicting key player responses, such as daily duration of
play (playing time) and purchases, to develop strategies for monetizing social networks (Park
et al., 2018) and generating in-game advertising revenue (Terlutter and Capella, 2013). For
analyzing such multivariate responses, the modeling framework must first address the com-
plex inter-dependencies between (1) a player’s decision to play, (2) their time spent playing
the game and (3) their propensity to make an in-game purchase. Additionally, it must incor-
porate the two key structural features of MMORPGs wherein (1) players who are members of
a guild have correlated playing behavior and (2) guilds have a dynamic effect on their mem-
ber’s playing behavior, such as their duration of play or purchase decisions. However, for
modeling such multivariate player responses in MMORPGs, the statistical tools employed in
contemporary research either assume that the player responses are not correlated or players in
MMORPGs play as independent entities (Borbora et al., 2011; Zhang et al., 2017; Park et al.,
2018). The first approach fails to uncover the positive, negative, or zero co-dependencies
among the various responses of a player while the second approach ignores the dynamic
influence of the guild and its members on a player’s game behavior.

In this article we develop a Crossed Random Effect Joint Modeling (CREJM) frame-
work for jointly modeling a player’s daily duration of play and their purchase propensity
in MMORPGs. In the context of single player mobile games, joint modeling of such player
responses have been shown to be of significant importance for developing efficient marketing
policies and for improved prediction of future playing behavior (Banerjee et al., 2020). More-
over, existing joint modeling frameworks, such as CEZIJ (Banerjee et al., 2020) and APLES
(Hui, Müller and Welsh, 2018), can tackle multivariate player responses in the setting of
single player games and, consequently, assume that players play the game as independent
entities. CREJM, in contrast, is flexible enough to incorporate both player dependence as
well as time varying guild effects on the future playing behavior of the guild members. We
summarize the key features of the CREJM framework below:

• In MMORPGs the social influence of fellow gamers on a player can be from (a) team
mates in the game-play, such as combat team mates, and (b) affiliations to online com-
munities such as guilds. We incorporate the effects of fellow team mates (whose number
can be very large in a player’s lifetime) using global parameters in a Generalized Linear
Mixed Models (GLMM) based joint estimation framework. To incorporate the effects of
guilds we use guild specific random intercepts. Thus, to model a player’s characteristics
we use a cross-classified set-up with the crossing being a player’s individual characteris-
tics and their guild’s influences (see Equation (1) in Section 3.1). Additionally, we model
the dynamic influences of the guilds by extending Equation (1) through time-varying ran-
dom intercepts (see Equation (2) in Section 3.2). Thus, our proposed CREJM framework
is a system of cross classified random effect models that incorporate the key structural



CREJM: CROSSED RANDOM EFFECTS JOINT MODELING FRAMEWORK 3

features of MMORPGs wherein guilds have a dynamic effect on their member’s play-
ing behavior and players who are members of a guild have correlated playing behavior.
While cross classified random effect models have been used in developing large-scale rec-
ommender systems (Koren, Bell and Volinsky, 2009; Khanna et al., 2013), estimation in
such large-scale cross-classified designs involve several fundamental statistical challenges
and is a topic of vibrant current research (Gao and Owen, 2020; Gao et al., 2017; Gao,
2017; Papaspiliopoulos, Roberts and Zanella, 2020; Ghosh, Hastie and Owen, 2022). To
the best of our knowledge, the use of cross classified models as analytical tools for studying
MMORPGs is new and we develop a disciplined algorithm for estimating the parameters
in CREJM.

• The MMORPG data discussed in Section 2 involves longitudinal data on several daily
player and guild characteristics. Existing literature (Zhang et al., 2017; Park et al., 2018;
Wei et al., 2019; Huang, Jasin and Manchanda, 2019) judiciously uses a subset of these
available attributes in a regression model. It is desirable to use all the available features and
to choose the relevant set of gaming characteristics that provides best predictive perfor-
mance. Our proposed GLMM based CREJM framework conducts simultaneous selection
of fixed and random effects. It imposes a hierarchical structure on the selection mechanism
and includes covariates either as fixed effects or composite effects where the latter are those
covariates that have both fixed and random effects (Hui, Müller and Welsh, 2017a). Follow-
ing Hui, Müller and Welsh (2017b,a); Banerjee et al. (2020), we use data-driven weighted
`1 penalties on the fixed effects as well as on the diagonal entries of the covariance matrix
of the player specific random effects (see Section 4). However, compared to the aforemen-
tioned works, CREJM involves an additional penalty for estimating the covariance matrix
of the time varying guild specific random effects (see Equation (8)). We study the asymp-
totic properties of the variable selection procedure in CREJM and establish its selection
consistency in Section 4.1.

• We conduct prediction of daily duration of play and purchase propensities of players con-
ditional on the observed longitudinal information (see Section 6). Based on these dynamic
predictions, game managers may develop personalized promotional and improved in-game
advertising policies. In Section 5 of the supplement (Banerjee et al., 2023a), we use the
CREJM framework for predicting the temporal trajectories of player correlations within
each guild and with respect to their daily duration of play and purchase activity. Guilds
with similar predicted correlation profiles over time provide valuable insights into the fu-
ture playing behavior of their members and can be used to design and optimize promo-
tional or reward policies specifically targeting those guild members (see figures 4 and 5 in
Section 5 of the supplement (Banerjee et al., 2023a)).

2. Motivating Data. In this paper we consider the daily player level gaming information
from a popular MMORPG where the players use one of the following four avatars; warrior,
archer, sorceress and cleric, to play. The game is typically played on personal computers
and is a “freemium" game (Kumar, 2014) as any player can download and play the game
for free without paying any subscription fee. Figure 1 provides the game play wherein our
MMORPG involves two main playing modes: player-versus-environment (PVE) mode and
player-versus-player (PVP) mode. In the PVE mode, players accumulate experience points
by completing missions and fighting monsters and villains in instanced dungeons. In the PVP
mode, players practice and improve game skills in one-on-one or group combats. The main
goal is character level progression and a player can elevate their game level by accumulat-
ing experience points, mainly through accomplishing missions and killing monsters in PVE
combats. Social connections with other players are forged through friendship networks and
guilds, and combat teams with guild members, friends and random players are formed to
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complete adventure missions. Moreover, within a guild members are ranked hierarchically,
from a leader at the top to associate leaders, senior members, junior members and finally
new members at the bottom. Purchases constitute one of the primary revenue streams for the
game managers and players purchase in-game items, such as weapons and costumes, to per-
form better in the PVE mode and thus complete their tasks more efficiently. Figure 2 provides

Fig 1: Game play flowchart.

two screenshots of the web version of our MMORPG. The screenshot on the left represents a

Fig 2: Game screenshots from the web. Left: screenshot represents a Player Versus Environ-
ment (PVE) game and shows the avatar’s character information on the top left, an online chat
box in the middle and a control panel for items, missions, game points, and maps in the right.
Right: screenshot shows the control panel of guild members.

Player Versus Environment (PVE) game and shows the avatar’s character information on the
top left, an online chat box in the middle and a control panel for items, missions, game points,
and maps in the right. The screenshot on the right shows the control panel of guild members
who can use the online voice chatting system to collaborate with other guild members to
complete missions together.

There are 5,188 players in our database that stores daily player level activity and their real
money purchases for 30 consecutive days. We use a part of the data for estimation and the
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other part as the hold out set for prediction (see details in Section 6). For each player the
database holds a host of time dependent covariates that are generated through the game-play
and include the focal player’s in-game characteristics, characteristics that capture the focal
player’s interaction with their friends and the in-game activities of those friends. Additionally,
on any one of the 30 days every player in our data has been part of a guild and so our data
also hold time varying guild characteristics and covariates that capture the focal player’s
interaction with their guild. This information is available for K = 50 guilds that the players
have been part of in those 30 days (See Tables 2 and 3 in Section 6 of the supplement for
details).
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Fig 3: Panel (a): Percentage of players who logged into the game by each guild over 30 days. The thick curve
represents the overall login percentages in the data over the 30 days while each thin curve is a guild specific
representation of the login percentages across time. The solid vertical lines indicate weekends while the dotted
lines represent, respectively, the Chinese New Year (day 6) and Valentine’s Day (day 17). Center: Average duration
of play in minutes for each guild and conditional on login. The thick curve represents the overall average duration
in the data across the 30 days. Right: Percentage of players with purchases > 0 by each guild and conditional
on login. The thick curve represents the overall purchase percentages in the data across the 30 days. Panel (b):
Heatmaps of the temporal evolution of three characteristics in each guild. Left: the number of guild members who
played in a team. Center: the average game sessions played in the guild. Right: the number of purchases made in
the guild.

In panel (a) of Figure 3, the left plot presents, for each guild, the percentage of players
who logged into the game over the 30 days. The thick curve represents the overall login
percentages across time while each thin curve is a guild specific representation of the login
percentages across the 30 days. The solid vertical lines indicate weekends while the dotted
lines represent, respectively, the Chinese New Year (day 6) and Valentine’s Day (day 17). The
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remaining two charts in panel (a) of Figure 3 are guild specific representation of the average
duration of play in minutes (center plot) and the percentage of players with positive purchase
(right plot), both conditional on login. The thick curve in these two plots are respectively,
the average duration and the overall percentage of players with positive purchase over the
30 days. These charts indicate that playing behavior, in terms of login, duration of play and
purchase, is substantially different across guilds. For instance, the observed login percentages
across the 50 guilds range from 40% to 80% on day 1 while conditional on login the range
of duration across guilds is atleast 80 minutes on any day. The purchase activities also vary
considerably across the guilds with a notable exception on day 17 (Figure 3 panel (a) right)
when all guilds seem to exhibit a spike in their purchase activities. This is related to an
ongoing promotion at that time which coincided with Valentine’s Day. In panel (b) of Figure 3
we further demonstrate that guilds are dynamic groups that evolve over time. We consider the
following three characteristics that represent player engagement within a guild: the number
of guild members who played in a team, the average game sessions played in the guild and
the number of purchases made in the guild. For each of these three guild characteristics, panel
(b) of Figure 3 presents a heatmap of their temporal evolution in each guild. It is interesting
to note that with respect to the first two characteristics (panel (b) left and center plots), the
temporal profiles of the guilds are relatively more dynamic than their temporal profiles for
the number of purchases made (panel (b) right). This is expected since purchases are rare in
our data and on an average less than 5% of the players who login make a purchase.

Our CREJM framework captures the heterogeneity in playing behavior across guilds by
incorporating guild specific random effects. These guild specific random effects are time
varying to account for the dynamic nature of the guilds as seen in panel (b) of Figure 3.
Together, they incorporate two key structural features of MMORPGs into our joint mod-
eling framework wherein (1) members of a guild have correlated playing behavior and (2)
guilds have a dynamic effect on their member’s playing behavior. In the following section
we formally introduce the CREJM framework and discuss its key features. Additional details
regarding the data are provided in Section 6 of the supplement (Banerjee et al., 2023a).

3. Cross Classified Random Effects Joint Modeling framework. Here we first in-
troduce a generic cross classified random effect model and then present our proposed joint
modeling framework CREJM.

3.1. Cross Classified Random Effect Models. Suppose we are interested in predicting a
single longitudinal outcome yij which may denote the log duration of play for player i on
day j. Here i= 1, . . . , n and j = 1, . . . ,m. At time j, let dijk = 1 if player i belongs to guild
k ∈ {1, . . . ,K} and 0 otherwise. A cross classified random effects model (Raudenbush, 1993;
Raudenbush and Bryk, 2002) for K guilds may be specified as follows:

(1) Yij = xijβ + bi +

K∑
k=1

dijk

(
ck + gjkγ

)
+ εij ,

where xij , gjk are some player and guild specific predictors at time j. Here (β,γ) represent

the vector of unknown fixed effect coefficients, bi
i.i.d∼ N(0, σ21), ck

i.i.d∼ N(0, σ22) are, respec-
tively, the player and guild specific random intercepts that are independent of each other. We
will assume that (i) εij ∼N(0, σ20) are independent of each other and the random intercepts,
and (ii) the number of guilds K is fixed so that players may change guilds across time but
no new guilds are formed, and existing guilds are not dissolved. Note that under model (1)
the correlation between the log duration of play (Yij , Yi′j) of two players (i, i′) belonging to
the same guild k at time j is non zero. Furthermore, in model (1) the guild random effects
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(ck : 1≤ k ≤K) do not vary over time which indicates that the guilds are static and exert the
same effect on a player’s duration of play Yij over time. However, as discussed in Section
2, guilds are dynamic entities and their effect on the playing behavior, duration of play in
this example, changes over time. To address this possibility, Equation (1) may be modified to
include time varying guild random effects as follows:

(2) Yij = xijβ + bi +

K∑
k=1

dijk

(
cjk + gjkγ

)
+ εij

where cjk now depends on time and one may assume ck = (c1k, . . . , cmk) ∼ Nm(0,Λ)
to emphasize the dependence between cjk, cj′k through the covariance matrix Λ which
can be unstructured, banded or first-order autoregressive (see for example Cafri, Hedeker
and Aarons (2015); Cafri and Fan (2018)). Figure 4 presents a schematic representation

Fig 4: Schematic representation of model (2) for two players (1,2) who are part of guild k
across the three time points {j − 1, j, j + 1}. The curved lines indicate that the guild ran-
dom effects {cj−1,k, cj,k, cj+1,k} are correlated. The dotted arrows indicate that these guild
random effects are common for both the players. The shaded rectangular boxes are the guild
specific predictors {gj−1,k, gj,k, gj+1,k} that the players share.

of model (2) for two players (1,2) who are part of guild k across the three time points
{j − 1, j, j + 1}. These players share the same guild specific predictors {gj−1,k, gj,k, gj+1,k}
that are represented in the shaded rectangular boxes. The corresponding guild random inter-
cepts {cj−1,k, cj,k, cj+1,k} are correlated which is shown via curved lines in Figure 4. The
black dotted arrows indicate that these guild random effects are common for both the players
and play the dual role of introducing dependence between the log duration of play for players
1 and 2 in guild k as well as exerting a dynamic effect on their log duration of play. In Section
3.2 we present our proposed joint modeling framework CREJM which extends model (2) to
the case of a vector of longitudinal responses that are modeled jointly.
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3.2. CREJM framework. We consider data from n players where every player i =
1, . . . , n is observed over m time points. Denote Yij as the duration of play for player i
on day j with Yi = (Yi1, . . . , Yim) and recall from Section 3.1 that at time j, dijk = 1 if
player i belongs to guild k ∈ {1, . . . ,K}, and 0 otherwise. Suppose αij is the indicator of
the event that player i logs into the game on day j (Yij > 0) and ξij is the indicator of
their purchase activity with πij = P(αij = 1), qij = P(ξij = 1|αij = 1), αi = (αi1, . . . , αim)
and ξi = (ξi1, . . . , ξim). Thus, πij here represents a player’s daily login probability whereas
qij corresponds to their purchase propensity conditional on the event that the player has
logged into the game on day j. We jointly model the three components [αi,Yi,ξi] given
the observations. Denote I to be the full set of p0 predictors in the data with If ⊂ I as
the set of player specific fixed effects (time varying or not) predictors and Ic ⊂ I , with
Ic ∩ If = ∅, as the set of time varying player specific predictors which are modeled by both
fixed and random effect coefficients. Such predictors that have both fixed and random ef-
fect components in the model are called composite effect predictors (Hui, Müller and Welsh,
2017a). Finally, let Ig = I\{Ic ∪ If} be the set of guild specific time varying fixed ef-
fect predictors. Let pf = |If |, pc = |Ic|, pg = |Ig| and so, pg + pc + pf = p0. For each of
the three models, s = 1,2,3, let x(s)

ij = (x
(s)
ijr : r ∈ If ∪ Ic), z(s)ij = (z

(s)
ijr : r ∈ Ic) denote,

respectively, the set of player specific fixed and random effect predictors in the sth model
and let g(s)jk = (g

(s)
jkr : r ∈ Ig) be the corresponding set of guild specific fixed effect pre-

dictors. We denote player i specific random effects by bi = (b
(1)
i ,b

(2)
i ,b

(3)
i ) and the time

varying guild specific random intercepts for guild k are denoted ck = (c
(1)
k ,c

(2)
k ,c

(3)
k ) with

c
(s)
k = (c

(s)
jk : 1≤ j ≤m) and c(s) = (c

(s)
k : 1≤ k ≤K).

We now discuss the models for duration of play and purchase propensity. First note that
player i logs into the game only at some time points, and so the observed duration of play Yi

has a mix of zeros and positive observations. To capture both the prevalence of these zeros
and potential large values observed in the support of Yij , we consider a zero inflated Log
Normal model for Yij in Equation (3). Thus, Yij has a mixture distribution with pdf,

(3) g1(αij , yij |b(1)i ,b
(2)
i ,c(1),c(2)) = (1− πij)I{αij = 0}+

πij(σyij)
−1φ

( log yij − µij
σ

)
I{αij = 1},

where

logit(πij) = x
(1)′

ij β
(1) + z

(1)′

ij b
(1)
i +

K∑
k=1

dijk

(
c
(1)
jk + g

(1)′

jk γ
(1)
)
,(4)

µij = x
(2)′

ij β
(2) + z

(2)′

ij b
(2)
i +

K∑
k=1

dijk

(
c
(2)
jk + g

(2)′

jk γ
(2)
)
.(5)

In Equation (4) we use a logistic regression model with player specific and guild specific
random effects to model the login indicator αij , while an identity link is used to model
expected log duration of play in Equation (5). Now, a player can potentially purchase (ξij = 1)
only if they log into the game on day j (αij = 1) and, even if the player logs in, they may
not exhibit a positive purchase. Thus, conditional on the player logging into the game, we
model the binary response ξij |αij = 1 with the covariates and the random effects through a
logit link in equations (6), (7).

(6) g2(αij , ξij |b(1)i ,b
(3)
i ,c(1),c(3)) = (1− πij)I{αij = 0}+
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πij

[
(1− qij)I{ξij = 0}+ qijI{ξij = 1}

]
I{αij = 1}

where

logit(qij) = x
(3)′

ij β
(3) + z

(3)′

ij b
(3)
i +

K∑
k=1

dijk

(
c
(3)
jk + g

(3)′

jk γ
(3)
)

(7)

In equations (3) and (6) the dependence on the fixed effects and the covariates are kept
implicit in the notations and only the involved random effects are explicitly demonstrated.
The three responses modeled in equations (4), (5) and (7) are interrelated as they carry
information about the playing behavior of individuals as well as the guilds. To model the
association between these responses we correlate the random heterogeneous effects from
each of the responses. Specifically, we let bi = (b

(1)
i ,b

(2)
i ,b

(3)
i )

i.i.d∼ N3pc(0,Σ) and ck =

(c
(1)
k ,c

(2)
k ,c

(3)
k )

i.i.d∼ N3m(0,Λ). Moreover, we assume that (a) for any {i, j, k}, biu is un-
correlated with c

(s)
jk for all u = 1, . . . ,3pc, and (b) Λ is such that for (s, s′) ∈ {1,2,3},

Cov(c
(s)
kj , c

(s′)
kj′ ) = 0 if |j − j′| > t′ which indicates that although the guild specific effects

are dynamic, the persistence of past effects vanish after a gap of t′ time points. In the context
of our MMORPG data that we analyze in Section 6, such a banded structure on Λ is natural
since players do not login to the game daily and so the persistence of past guild effects is
limited. The aforementioned banded structure on Λ not only captures an important aspect of
the nature of guild effects but it also drastically reduces the number of non-zero elements of
Λ which are finally estimated under the CREJM framework.

4. Variable Selection in CREJM. The daily data generated by a MMORPG usually
hold several player and guild level characteristics. Recall that the proposed CREJM frame-
work involves modeling three responses: Login indicator (4), duration of play conditional on
login (5) and purchase propensity conditional on login (7). For the login indicator model,
which forms the base of our joint model, it is possible to judiciously choose, based on some
prior knowledge or heuristics, a subset of predictors that may predict a player’s future login
probability (see for example Zhang et al. (2017); Park et al. (2018); Wei et al. (2019); Huang,
Jasin and Manchanda (2019)). However for the remaining two conditional models, choosing
such relevant predictors from a large list of potential predictors only based on prior knowl-
edge is difficult as the dynamics of the conditional response variable may render conventional
expert judgment incorrect. Thus, to identify important characteristics that may help predict
player duration of play and purchase propensity in these games, we conduct automated vari-
able selection in the mixed model framework of equations (4), (5) and (7). Under such a
framework selection of fixed and random effect components has received considerable at-
tention. For instance, Bondell, Krishna and Ghosh (2010) and Ibrahim et al. (2011) proposed
penalized likelihood procedures to simultaneously select fixed and random effect components
under the special case of a linear mixed effect model, while Fan and Li (2012), Peng and Lu
(2012) and Lin, Pang and Jiang (2013) conduct selection of fixed and random effects using a
two stage approach. Several procedures to select only the fixed effects or the random effects
have also been proposed under a GLMM framework; see Pan and Huang (2014); Hui, Müller
and Welsh (2018) and the references therein. Recently, proposals for hierarchical variable
selection in GLMMs have been introduced (Hui, Müller and Welsh, 2017a; Banerjee et al.,
2020) wherein the selection mechanism conducts joint selection of fixed and random effects
in a hierarchical manner such that a candidate random effect is included into the model only
if the corresponding fixed effect is in the model. In this section, we discuss the variable se-
lection mechanism in CREJM that conducts such hierarchical selection of fixed and random
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effects components in multivariate mixed models and ensures that non-zero random effects
in the model are accompanied by their corresponding nonzero fixed effects.

Let

Θ = (β(1),β(2),β(3),γ(1),γ(2),γ(3), σ,vec(Σ),vec(Λ)) := (Γ, σ,vec(Σ),vec(Λ)),

denote the vector of all parameters to be estimated. Here Γ = (Γ(s) : s= 1,2,3) and Γ(s) =
(β(s),γ(s)) := {Γsr : r ∈ I}. The marginal log-likelihood of the observed data under the joint
model is:

`n(Θ) = log

∫ { n∏
i=1

m∏
j=1

p
(
αij , yij , ξij |bi,c,Γ, σ

)}
p(b|Σ)p(c|Λ)dbdc,

where b = {bi : 1 ≤ i ≤ n} and c = (c1, . . . ,cK). Let Σ
(s)
rr to be the variance of b(s)ir for

r ∈ Ic, s ∈ {1,2,3} and for any matrix A, denote ‖A‖1 :=
∑

i,j |Aij |. We solve the follow-
ing maximization problem involving a penalized log-likelihood function `n(Θ) for variable
selection in the CREJM framework:

(8) max
Θ,Σ�0,Λ�0

`n(Θ) − nλ1
3∑
s=1

∑
r∈I

wsr

(
|Γsr| + dsrΣ

(s)
rr I{r ∈ Ic}

)
− nλ2‖P ∗ Λ‖1.

Here (λ1, λ2) ∈R2
+ are the regularization parameters and ∗ denotes element-wise multiplica-

tion. We now discuss the two penalties associated with λ1 and λ2 in Equation (8). The penalty
‖P ∗ Λ‖1, originally proposed in Bien and Tibshirani (2011), enforces a banded structure
on the covariance matrix Λ of the guild specific random effects ck = (c

(1)
k ,c

(2)
k ,c

(3)
k ) such

that for (s, s′) ∈ {1,2,3}, Cov(c
(s)
jk , c

(s′)
j′k ) = 0 if |j − j′| > t′. This is achieved through the

3m× 3m symmetric matrix P where, for (u, v) ∈ {1, . . . ,3m},

(9) P (u, v) =


I(|u− v|> t′), if (l− 1)m+ 1≤ u≤ v ≤ lm, l= 1,2,3

I(|u− v(mod m)|> t′), if 1≤ u≤m, m+ 1≤ v ≤ 2m

I(|m− u− v(mod m)|> t′), if m+ 1≤ u≤ 2m, 2m+ 1≤ v ≤ 3m.

In Figure 5 we provide a representation of P using Equation (9) for three different choices of
t′ and with m= 5. Here the entries with P (u, v) = 1 are in a darker shade while those with
P (u, v) = 0 are in a lighter shade. For a sufficiently large λ2, the entries of Λ that correspond
to the non-zero entries of P are shrunk towards 0. Moreover, the resulting covariance matrix
Λ is denser for larger t′ indicating that the guild effects persist longer. In Section 6 we discuss
the choice of t′ for our application involving the MMORPG data of Section 2.

In Equation (8), the penalty associated with λ1 is designed to maintain the hierarchy in
selecting the fixed and random effects. For instance, when r ∈ Ic the penalty ensures that
either the corresponding fixed and random effect is shrunk to zero or only the random effect
is shrunk to zero. The adaptive weights (wsr, dsr) ∈R2

+ play a crucial role in this hierarchical
selection mechanism. In Section 5 we discuss the construction of these weights and present
an iterative algorithm that alternates between estimating Θ and redefining the data-driven
weights (wsr, dsr) such that the weights used in any iteration are computed from the solutions
of the previous iteration (see Candes, Wakin and Boyd (2008); Zhao and Kočvara (2015); Lu,
Lin and Yan (2015); Banerjee et al. (2020) for details on these kind of approaches).

We end this section with the remark that the maximization problem based on criterion
(8) can be augmented with linear inequality constraints A(s)Γ(s) ≤ a(s) that may incorpo-
rate domain expertise and impose monotonicity, sign or other structural constraints on the
components of Γ(s).
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Fig 5: Representation of P using Equation (9) for three different choices of t′ and with
m= 5. Here the entries with P (u, v) = 1 have a darker shade while those with P (u, v) = 0
are in a lighter shade.

4.1. Asymptotic Properties. In this section we study the asymptotic properties of the
variable selection procedure in CREJM. Our analysis will keep pc fixed and allow p= 3(pf +
pg) to grow at a slower rate than n. We first introduce some notations where the dependence
on p will be implicit and then state our main result.

Let the penalized likelihood criteria in Equation (8) be denoted by `penn (Θ) where

(10) `penn (Θ) = `n(Θ)− nλ1
3∑
s=1

∑
r∈I

wsr

(
|Γsr|+ dsrΣ

(s)
rr I{r ∈ Ic}

)
− nλ2‖P ∗Λ‖1.

Denote Θ0 = (Γ0,vec(Σ0),vec(Λ0)) to be the true parameter values and p̃ = |{Γ0r : r ∈
If ∪ Ig}| be the number of true non-zero fixed effects in Γ0. Let Θ1 denote the non-
zero elements of Θ0 and, without loss of generality, let Θ0 = (Θ1,Θ2) where Θ2 = 0.
Similarly, for a local maximizer Θ̂n of Equation (8), we write Θ̂n = (Θ̂n1, Θ̂n2). Denote
Hn(Θ0) =−n−1∂2`n(Θ)/∂Θ∂ΘT |Θ0

to be the observed Fisher Information matrix at Θ0

with λmin(Hn(Θ0)) and λmax(Hn(Θ0)) being its minimum and maximum eigenvalues. We
denote Fn = {Θ : Σ � 0,Λ � 0} to be the parameter space over which the maximization
problem in Equation (8) is defined and impose the following regularity conditions that are
needed in our technical analysis.

(A1) For all n, Hn(Θ0) satisfies 0 < c1 < λmin(Hn(Θ0)) < λmax(Hn(Θ0)) < 1/c1 <∞
for some constant c1.

(A2) For every ε > 0, there exists a δ > 0 such that for n large, (1− ε)c1 < λmin(Hn(Θ))<
λmax(Hn(Θ))< (1 + ε)/c1 for all Θ satisfying ‖Θ−Θ0‖2 < δ.

(A3) The weights satisfy wsr =Op(1), dsr =Op(1) whenever r ∈Θ1, and for ν > 0, wsr =

Op{(n/p)ν/2}, dsr =Op{(n/p)ν/2} whenever r ∈Θ2.
(A4) As n→∞, (a) λ1(np̃)1/2→ 0 (b) λ1(n/p)(ν+3)/4→∞.

Condition (A1) ensures that at the true parameter value Θ0 the observed Fisher information
matrix is positive definite and its eigenvalues are uniformly bounded while condition (A2)
extends this to a small neighborhood of Θ0. These conditions are similar to assumptions A4
and A5 in Chen and Chen (2012). Conditions (A3) and (A4) are similar to assumptions (C5)
and (C6) in Hui, Müller and Welsh (2017a). In particular (A3) requires that the data-driven
adaptive weights exhibit different asymptotic behavior for the true zero and true non-zero
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parameters while condition (A4) restricts the rate of growth of the regularization parameter
λ1 and allows p to grow with n such that (p/n)(ν+3)/4(np̃)1/2→ 0 as n→∞.

THEOREM 4.1. Under assumptions A1 − A4, there exists a local maximizer Θ̂n =
(Θ̂n1, Θ̂n2) of `penn (Θ) such that ‖Θ̂n − Θ0‖2 = Op(

√
p/n) and P(Θ̂n2 = 0) → 1 as

n→∞.

Theorem 4.1, proved in Section 1 of the supplement (Banerjee et al., 2023a), establishes
the selection consistency of the variable selection procedure under the CREJM framework in
the sense that there exists a

√
n/p consistent maximizer Θ̂n of `penn (Θ) that identifies the

true non-zero elements of Θ0 with high probability as n→∞.

5. Estimation Procedure. In this section we discuss our estimation procedure that in-
volves solving the maximization problem of Equation (8). Here the suffix n will be implicit
in our notations.

The marginal likelihood `(Θ) in Equation (8) involves a high dimensional integral with
respect to the random effects. In GLMMs these integrals often have no analytical form
and several approaches, such as Laplacian approximations (Tierney and Kadane, 1986),
adaptive quadrature approximations (Rabe-Hesketh et al., 2002), penalized quasi likelihood
(PQL)(Breslow and Clayton, 1993) and EM algorithm (McCulloch, 1997), have been pro-
posed to tackle this computational hurdle. We use an iterative algorithm which is similar to
the Monte Carlo EM (MCEM) algorithm of Wei and Tanner (1990). In the context of crossed-
classified random effects model, the MCEM algorithm has recently been used for large-scale
(Koren, Bell and Volinsky, 2009) and parallel (Khanna et al., 2013) matrix factorization prob-
lems in machine learning.

The MCEM algorithm treats the random effects (bi,c) as ‘missing data’ and obtains Θ̂, an
estimate of Θ, by maximizing the expected value of the complete data likelihood `cl(Θ,b,c)
where,

`cl(Θ,b,c) =

n∑
i=1

m∑
j=1

log p(αij , yij , ξij |bi,c,Γ, σ) +

n∑
i=1

log p(bi|Σ) +

K∑
k=1

log p(ck|Λ)

=

n∑
i=1

`cli (Θ,bi,c).

Denote the Q-function `Q(Θ) =
∑n

i=1E`cli (Θ,bi,c) where the expectation is over the con-
ditional distribution of (bi,c) given the observations at the current parameter estimates. Let
Θ(t) denote the parameter estimates at iteration t. In iteration t+ 1, the MCEM algorithm
performs the following two steps until convergence:

E-step - Evaluate `Q(t)(Θ) =
∑n

i=1Ebi,c|Θ(t),Yi
`cli (Θ,bi,c) where the expectation is over the

conditional distribution of (bi,c) given the observations Yi := (αi,Yi,ξi) at the current
estimates Θ(t). Now,

Ebi,c|Θ(t),Yi
`cli (Θ,bi,c) =

∫
`cli (Θ,bi,c) p(bi,c | Yi,Θ(t)) dbidc

and

p(bi,c | Yi,Θ(t)) =

exp{−`i(Θ(t))}p(Yi|Θ(t),bi,c)φ3pc(bi|0,Σ(t))φ3mK(c|0,I3mK ⊗Λ(t)),
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where, φq( · |0,Σ(t)) is q dimensional normal density with mean 0 and variance Σ(t). In
the display above, the expectation involves a multivariate integration with respect to the
random effects bi,c which is evaluated by Monte Carlo integration. We approximate it as:( D∑

d=1

`cli (Θ,bdi ,c
d) p(Yi|Θ(t),bdi ,c

d)

)/( D∑
d=1

p(Yi|Θ(t),bdi ,c
d)

)
where bdi ,c

d are random samples from φ3pc( · |0,Σ(t)), φ3mK( · |0,I3mK ⊗Λ(t)) respec-
tively and D = 2000 is the number of monte carlo samples.

M-step - Solve the maximization problem in Equation (8):

(11) Θ(t+1) = arg max
Θ,Σ�0,Λ�0

`Q(t)(Θ)−

nλ1

3∑
s=1

∑
r∈I

w(t)
sr

(
|Γsr|+ d(t)sr Σ(s)

rr I{r ∈ Ic}
)
− nλ2‖P ∗Λ‖1,

where w(t)
sr = min

(
|Γ(t)
sr |−ν , ε−11

)
and d(t)sr = min

(
|Σ(s,t)

rr |−ν |Γ(t)
sr |−ν , ε−12

)
with ν = 2, are

data driven adaptive weights that are updated at the end of every iteration of the MCEM.
The construction of these weights is designed to maintain the hierarchy in selecting the
fixed and random effects (see Candes, Wakin and Boyd (2008); Zhao and Kočvara (2015);
Lu, Lin and Yan (2015) for details on these kind of approaches) and follows the approach
described in Banerjee et al. (2020). For numerical stability and to allow a non-zero es-
timate in the next iteration given a zero valued estimate in the current iteration, we fix
ε1 = 10−2 (Candes, Wakin and Boyd, 2008). Moreover, whenever |Γ(t)

sr |= 0 we enforce a
large penalty on the corresponding diagonal element of Σ in iteration (t+ 1) by setting
ε2 = 10−4. So if r ∈ Ic, the penalty wsrdsr on the diagonal elements of Σ encourages hi-
erarchical selection of random effects. Further details on solving Equation (11) is provided
in Section 2 of the supplement (Banerjee et al., 2023a).

6. Analysis of MMORPG Data. In this section we analyze the MMORPG data dis-
cussed in Section 2 and use the CREJM framework for modeling the three responses: Login
Indicator, Duration of Play and Purchase Propensity. The data hold 18 player level gaming
characteristics across n = 5,188 players observed over a period of 30 days and include the
focal player’s in-game characteristics, their virtual gender in the game, covariates that capture
the focal player’s interaction with their friends, the in-game activities of those friends, and
covariates that are related to the focal player’s interaction with their guild. It is well known in
the marketing literature (Zhang et al., 2017; Park et al., 2018; Wei et al., 2019) that a player’s
activities in MMORPGs are deeply influenced by their friends. Thus, in addition to a player’s
individual playing and purchase history that are natural predictors of their future behavior,
the CREJM framework also relies on the past activities of the focal player’s friends for mod-
eling their daily duration of play and purchase propensity. Along with these player specific
covariates, the data hold 5 time varying guild characteristics for K = 50 guilds. These guild
characteristics capture valuable information pertaining to the size of the guilds, the number
of members that played as part of a team within the guild and other covariates measuring
social contagion within the guilds. Finally, there are 2 indicator variables in the data that
identify weekends and holidays in our panel. The description of these 25 predictors and their
distribution are provided in Section 6 of the supplement (Banerjee et al., 2023a).

In the absence of any prior knowledge regarding which of these 25 predictors may appear
in the three models, we conduct variable selection in CREJM. As discussed in Section 4,
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CREJM conducts joint selection of fixed and random effects in a hierarchical manner and
ensures that non-zero random effects in the model are accompanied by their corresponding
fixed effects. We treat the 17 player specific covariates, excluding the indicator variable that
captures the player’s virtual gender, as potential composite effect predictors and allow the
CREJM variable selection procedure to determine which predictors enter the model as just
fixed effects or as fixed and random effect predictors. This is the most flexible representation
of these player specific covariates because the selection procedure includes these covariates
into the model either as fixed or composite effects in a data driven fashion. Finally, the 5
guild characteristics and the 3 indicator variables are treated as potential fixed effects with
no corresponding random effect counterparts. In principle, it is possible to treat the guild
characteristics as composite effects and let the selection mechanism select them as either
fixed or composite effect predictors in the model. However, in such a scenario the CREJM
variable selection algorithm would require an additional penalty in the optimization problem
of Equation (8). Solving such an optimization problem is computationally challenging as
it requires careful tuning of multiple regularization parameters and we do not pursue that
extension in this article.

Overall, the CREJM selection mechanism must select random effects from a set of 54
potential random effects (17 for each of the 3 sub-models and their 3 intercepts) and select
fixed effects from a set of 78 potential fixed effects (25 for each of the three sub-models and
their 3 intercepts). For variable selection and estimation (Section 6.1), the CREJM framework
relies on the first 15 days worth of data while the remaining 15 days are used for assessing
its prediction performance (Section 6.2). Furthermore, CREJM considers time j − 1 values
of the predictors for modeling the three responses at time point j because at time j these
player and guild characteristics are known only upto the previous time point. We initialize the
CREJM algorithm and the adaptive weights (wsr, dsr) in Equation (11) by fitting a saturated
model on a subset of 500 players. As discussed in Section 3.2, the guild specific random effect
covariance matrix Λ is such that for any (s, s′) ∈ {1,2,3}, Cov(c

(s)
jk , c

(s′)
j′k ) = 0 if |j− j′|> t′,

which indicates that the persistence of past guild effects vanish after a gap of t′ time points. In
this application we take t′ = 3 which allows the CREJM framework to capture guild effects
from the previous 3 days. This is reasonable since the daily average time since last login has a
mean of about 2 days across the first 15 days in our data. Finally, the regularization parameter
λ2 is fixed at 0.5 while λ1 is chosen as that value of λ ∈ {0.001,0.005,0.01,0.05,0.1} which
minimizes BICλ where BICλ = −2`Q(Θ̂) + log(n)dim(Θ̂) (Bondell, Krishna and Ghosh,
2010; Lin, Pang and Jiang, 2013; Hui, Müller and Welsh, 2017a) and dim(Θ̂) is the number
of non-zero components in Θ̂.

The R code for reproducing all the analysis in this paper is available in Banerjee et al.
(2023b).

6.1. The fitted joint model and its interpretations. The analysis presented in this section
relies on the first 15 days worth of data for variable selection and estimation using CREJM.
To obtain the estimates of the fixed effect coefficients, and the random effect covariance ma-
trices Σ and Λ, we rely on the selected variables for each of the three models and re-fit the
selected model on the entire data using the unconstrained MCEM algorithm of Section 5.
The list of selected predictors and their estimated fixed effect coefficients for the submodels
of Login Indicator, Duration and Purchase Propensity are presented in Table 1 where ‘PVP’
stands for player versus player and ‘PVE’ stands for player versus environment. The column
‘FE/CE’ indicates whether the covariate is a candidate fixed effect (FE) or a composite effect
(CE). The selected composite effects are those predictors that exhibit a (*) over their coef-
ficient estimates in Table 1. All the selected fixed and random effects obey the hierarchical
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structure discussed in Section 4. In what follows, we discuss the fitted coefficients and their
interpretation for each of the three sub-models.
Login Indicator - The CREJM selection mechanism selects 9 player specific compos-
ite effect predictors and 1 guild specific predictor. The coefficient sign on the variables
pvp_play_time, pvp_kill_point, no_of_games and time_since indicate
that, all other things remaining constant, a more active player has a higher odds of logging
into the game the next day. In particular, pvp_play_time and no_of_games increase
the odds of login by almost 49% and 39% respectively. Moreover, higher a player’s achieve-
ment level (pvp_kill_point, quest_count), the higher is the likelihood that they
will login the next day. We find that the social contagion factors like experience with friends
and guild membership also influence a player’s likelihood of login. For example, a higher de-
gree centrality as measured by the number of friends (friend_count), increases the odds
of login by a factor of 2. Interestingly, a larger guild size (guildmem_count) reduces the
odds of login by more than 30%. This negative relationship is consistent with previous lit-
erature (Hackman and Vidmar, 1970), which has suggested that a larger guild size usually
reduces a guild members’ satisfaction and dilutes their social identity, thus, reducing their
likelihood of logging into the game.

TABLE 1
Selected fixed effect coefficients and their estimates under the submodels Login Indicator, Duration of Play and
Purchase Propensity. The selected composite effects are those predictors that exhibit a (*) over their coefficient

estimates in Table 1. See Table 2 in Section 6 of the supplement (Banerjee et al., 2023a) for a detailed
description of the predictors.

Type FE/CE Predictors Login Ind. Duration Purch Prop.
CE intercept -1.043* 0.548* -1.103*

Focal player’s
in-game char-
acteristics

CE level - - -
CE pvp_play_time 0.397* - 0.873*
CE pvp_kill_point 0.403* - -1.016*
CE quest_count 0.098* - -
CE mission_count - - -
CE pve_time -0.021* 0.082 -
CE no_of_game 0.330* 0.055 -

Focal player’s
interaction with
their friends and
the in-game ac-
tivities of these
friends

CE friend_count 0.967* 0.405* 0.437*
CE friend_mean_level - - -0.258*
CE no_of_friend_purch - - -
CE total_friend_buy - - -
CE no_of_friend_interact 0.360* - -
CE game_round_play_with_friends - - -

Focal player’s
interaction with
their guild

CE guild_tenure - - -
CE no_of_guildmem_interact - - -
CE no_of_game_with_guildmem - - -

Guild charac-
teristics

FE guildmem_interact - 0.106 -
FE avg_game_with_guildmem - - -
FE guild_total_purch - - -
FE no_of_guildmem_purch - - -
FE guildmem_count -0.389 - -0.655

Other charac-
teristics

FE gender - - -
FE weekend - 0.184 -
FE holiday - - -
CE time_since -0.558* - -0.503*

Duration of play - CREJM selects a relatively sparser model for Duration of play which is
conditioned on the event of login. The selected model has 6 predictors of which two are
player specific composite effect predictors and one is a guild specific predictor. For this
model, we find that the coefficient signs on the two selected social contagion predictors
(friend_count, guildmem_interact) are positive. This indicates that conditional
on login and all other things remaining constant, a higher degree centrality as measured by
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the number of friends (friend_count), leads to an overall increase in the future game
time. Moreover, being part of a guild that has a higher guildmem_interact, which mea-
sures total number of guild members that played as part of a team within the guild, predicts
a longer gaming time on the next day. This positive effect of guild interaction highlights the
importance of social connections in enhancing a player’s engagement in MMORPGs and is
of managerial importance to the platforms. Note that a guild in which members form teams to
play the game has a positive effect on a player’s social identity and their loyalty to the game
(Kang, Ko and Ko, 2009), while from the login indicator model an increase in the guild size
reduces the player’s satisfaction and their social identity. Thus different aspects of a player’s
guild experience can have different impact on the playing behavior. From Table 1, we also
find evidence of a weekend effect (weekend) which predicts a relatively longer duration of
play on weekends.
Purchase Propensity - CREJM selects 7 predictors of which six are player specific com-
posite effect predictors and one is a guild specific predictor. We note that conditional
on login, both individual experience and social contagion factors impact a player’s fu-
ture purchase propensity. For instance, the longer a player is engaged in the PVP mode
(pvp_play_time), the higher is their odds of future purchases. We also observe that when
a player has higher PVP killing points (pvp_kill_point) from the last login, it reduces
their odds of future purchases. This indicates that more active but less skilled players are
more likely to make future purchases, perhaps to increase their skill. The social contagion ex-
perience from friends (friend_mean_level, friend_count, guildmem_count)
have different effects on the propensity to purchase. Consistent with prior literature on social
contagion (Park et al., 2018), we observe that when degree centrality (friend_count)
increases, it also increases the odds of future purchase, all other things remaining con-
stant. However, the odds of future purchases are also impacted by the nature of friends a
player plays with. When a player plays with friends who have a higher average skill level
(friend_mean_level), it reduces the focal player’s odds of future purchase. As in the
case of login indicator model, we find that the coefficient sign on time_since (days
since last login) is negative and when a player belongs to a guild with a larger guild size
(guildmem_count) their likelihood for future purchase is lower.

We now discuss the estimated covariance matrix Σ̂ of the player specific random effects.
In Figure 6 left, we present a heatmap of the 17× 17 correlation matrix obtained from Σ̂.
Within the three sub-models that were modeled jointly, we note that the random effects of the
selected composite effect predictors are correlated. This indicates that players exhibit idiosyn-
cratic playing profiles over time. Furthermore, we notice several instances of cross correla-
tions across the three sub-models. For example from Figure 6 right, the random effect for the
predictor no_of_friend_interact (no. of friends a player played with in teams during
game sessions) in the Login Indicator model has a negative correlation with the random effect
for time_since (days since last login) in the Purchase Propensity model. Similarly the ran-
dom effects associated with pvp_kill_point(3) and pvp_play_time(1) demon-
strate a positive correlation. These cross correlations suggest that the modeled responses are
correlated for a player and the CREJM joint modeling framework allows such information
pooling across the related responses which ultimately aids game managers in better predict-
ing future player responses over time as discussed in Section 6.2.

6.2. Prediction performance. Here we present the prediction performance of the fitted
joint model of Section 6.1 in dynamically predicting the three responses over the next 14
days (j = 17, . . . ,30). For predicting the three responses, we consider two competing models-
Benchmark I and Benchmark II, which we discuss below.

For Benchmark I we adopt a generalized linear model (GLM) setup and use the R-package
glmmLasso (Schelldorfer, Meier and Bühlmann, 2014) for variable selection. In particular,
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Fig 6: Left: Heatmap of the 17× 17 correlation matrix obtained from Σ̂. On the horizontal
axis are the selected composite effects for the three sub-models: Login Indicator, Duration
and Purchase Propensity. The horizontal axis begins with the intercept from the Login In-
dicator model and ends with time_since from the Purchase Propensity model. Right: A
network that demonstrate several cross correlations across the models. Solid lines represent
positive correlations and dotted lines represent negative correlations. The model numbers are
inside the parenthesis next to the predictor names.

Benchmark I does not model the three outcomes jointly, has no player or guild specific ran-
dom effects and relies on logit links for Login Indicator and Purchase Propensity, and an
identity link for log of positive Duration of play. In case of Benchmark II we consider the
GLMM setup and use the R-package rpql (Hui, Müller and Welsh, 2017b) to perform joint
selection of fixed and random effects with similar link functions as used in Benchmark I. The
rpql package uses a regularized PQL (Breslow and Clayton, 1993) to perform simultaneous
selection of fixed and player specific random effects but unlike CREJM it does not model the
responses jointly and ignores the guild specific random effects. Predictions from Benchmark I
are obtained by evaluating the fitted model on the validation data. However, since Benchmark
II and CREJM are both mixed models, the prediction process must, respectively, estimate the
latent random effects (b

(s)
i , c

(s)
jk ) and appropriately account for the endogenous nature of the

three responses. To do that we use the simulation scheme in Section 7.2 of Rizopoulos (2012)
Rizopoulos (2012) and Section 3 of Rizopoulos (2011) Rizopoulos (2011), and estimate the
expected time j responses given the observed responses until time j − 1 (details provided in
Section 3 of the supplement (Banerjee et al., 2023a)).

Table 2 summarizes the results of predictive performance of CREJM and the two bench-
mark models. For the binary responses of Login Indicator and Purchase Propensity, Table 2
presents the false positive (FP) rate and the false negative (FN) rate respectively averaged
over the 14 time points. The FP rate measures the percentage of cases where the model
incorrectly predicted login (or positive purchase) whereas the FN rate measures the per-
centage of cases where the model incorrectly predicted no login (or no purchase). For the
login indicator model, Benchmark II exhibits the highest FP rate (Table 2) while Bench-
mark I has the lowest FN rate. CREJM, on the other hand, has the lowest FP rate and
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TABLE 2
Results of predictive performance of CREJM and Benchmarks I, II. For Login Indicator and Purchase

Propensity, the false positive (FP) rate / the false negative (FN) rate averaged over 14 time points are reported.
For Duration of Play, the ratio of prediction errors (12) of Benchmarks I, II to CREJM averaged over the 14 time

points are reported.

Submodels Benchmark I Benchmark II CREJM
Login Indicator (FP / FN) 13.19 / 12.43 13.45 / 13.32 8.68 / 15.76
Duration of Play 3.07 1.83 1
Purchase Propensity (FP / FN) 0.00 / 2.55 0.3 / 2.13 0.07 / 2.17

its FN rate is relatively larger than the two benchmarks. However, for predicting the zero
inflated response of Purchase Propensity, CREJM demonstrates a relatively superior per-
formance over the Benchmark models. To assess the relative prediction performance for
positive Duration of Play, we adopt a different approach and first calculate the time j
prediction errors PEj for the Benchmark models and CREJM as follows. For any model
M∈{Benchmark I, Benchmark II, CREJM}, we define PEMj at time j = 17, . . . ,30 as

(12) PEMj (Y∗, Ŷ∗) =

n∑
i=1

∣∣∣ logY ∗ij − log Ŷ ∗ij

∣∣∣
where Y ∗ij = Yij if αij = 1 and 1 otherwise, and Ŷ ∗ij = Ŷij if α̂ij = 1 and 1 otherwise, where
Ŷij , α̂ij are model M predictions of Duration and Login, respectively, for player i at time
j. Note that PEMj measures the total absolute deviation of the prediction from the truth at
any time j and for notational convenience its dependence on αij , α̂ij has been suppressed.
For the Duration model, Table 2 presents the ratio of the prediction errors of the Benchmarks
to the CREJM model averaged over the 14 time points. So, a ratio in excess of 1 indicates a
larger absolute deviation of the prediction from the truth when compared to CREJM. We note
that the two Benchmark models exhibit prediction error ratios bigger than 1 with Benchmark
I being the worse. Benchmark II exhibits a relatively better prediction error ratio than Bench-
mark I as it benefits from using the GLMM framework. However, unlike CREJM, it is unable
to account for the dependencies between the responses which is reflected in its prediction
error ratios being still bigger than 1.

Section 4 of the supplement (Banerjee et al., 2023a) includes additional analyses for com-
paring the predictive performance of CREJM and the two Benchmark models in dynamically
predicting the three responses. In particular, we demonstrate that CREJM improves the av-
erage median prediction error on duration of play from about 4 minutes for Benchmark II to
approximately 1.5 minutes. This is a substantial improvement considering the importance of
accurate and reliable predictions of duration of play is concerned for developing personalized
promotional and monetization strategies for MMORPGs.

6.3. Time varying guild random effects and predicted player correlations. Due to the
paucity of space, we discuss the estimates ĉ(s)jk of the time varying guild random effects

c
(s)
jk in Section 5 of the supplement (Banerjee et al., 2023a). Additionally, in Figure 4 of

Section 5, we present three heat-maps, one for each of the three responses, that plot the mean
predicted correlation over time of all players that are members of guild k where k = 1, . . . ,50.
Finally, we discuss how guilds with similar predicted correlation profiles over time provide
valuable insights into the future playing behavior of their members and can be used to design
promotion or reward policies specifically targeting those guild members.



CREJM: CROSSED RANDOM EFFECTS JOINT MODELING FRAMEWORK 19

7. Discussion. MMORPGs are dynamic environments that focus on the development of
a player’s in-game virtual character through persistent exploration of the gaming environ-
ment. One of their key distinguishing features from single player games is that they not only
develop a player’s gaming skill but also aim to provide an enhanced experience by involving
collaboration and team building in game-play (Clements, 2012; Borbora et al., 2011). For
instance, all other things remaining constant, we find that (Section 6.1) the future purchase
potential is higher for a player with more friends whereas their future duration of play is
predicted to be lower when they are part of a community that has many members as this
leads to a loss in the player’s social identity. Understanding the factors that influence such
dichotomous future playing and purchase behavior is valuable for managers, as this enables
them to better assess the effectiveness of their promotional activities in engaging players.
Furthermore, a player’s motivation for playing these games and making purchases of pre-
mium features can be broadly attributed to three factors: (a) their individual achievements in
the game, (b) the social influence of their peers, and (c) their social interactions with online
communities such as guilds. Therefore, a joint modeling framework that conducts prediction
of correlated player attributes, such as their duration of play and purchase propensity, must
rely not only on the player’s past individual performance in the game but also on the influ-
ence of their friends and the communities that they are part of. Moreover, the ability of such
a framework to incorporate player dependence as well as time varying network effects, such
as guild effects, on the future playing behavior of its members can have a substantial impact
on its prediction performance as demonstrated in Section 6.2.

The proposed CREJM framework is a GLMM based joint modeling framework that pro-
vides a unified approach for jointly modeling and predicting a player’s daily duration of play
and their purchase propensity in MMORPGs. Variable selection in CREJM relies on a flex-
ible representation where initially all player specific covariates are set as composite effects,
and then a data-driven procedure selects these covariates into the model as either fixed ef-
fects by removing the corresponding random effect or as composite effects. This approach
avoids subjective usages of random effects which are very difficult to comprehend for the
conditional models used for purchase propensity and duration of play. Moreover, variable
selection in mixed effects models involve substantial computational burden when the relative
importance of the candidate covariates are determined solely based on prior knowledge, in-
formation criteria or the fence (Jiang et al., 2008). CREJM uses a novel MCEM algorithm
with iteratively adjusting weights to significantly reduce computational costs and enhance
scalability. Thus, CREJM can be used for analyzing large gaming datasets.

We apply the CREJM framework on a large-scale data from a popular MMORPG and
exhibit its superior performance in dynamically predicting player responses. Our analysis
reveals that modeling the player responses jointly and allowing time-varying guild effects
improves prediction accuracy relative to other benchmark models and such improved pre-
dictions provide valuable insights to the game managers for developing personalized promo-
tional strategies. Additionally, CREJM provides data-driven evidence that (i) players exhibit
idiosyncratic playing profiles, (ii) the player responses are correlated, and (iii) the guild ef-
fects are time-varying. Such insights are unavailable from simpler models that do not incor-
porate player specific random effects, fail to account for the correlations across a player’s
responses and ignore the time-varying nature of the guild effects. We use the estimates of the
time-varying guild random effects from the CREJM framework to predict the temporal trajec-
tories of player correlations within each guild and with respect to each of the three responses.
These correlation profiles have substantial business implications for platform monetization
and enhancing the effectiveness of existing promotional and reward policies. For instance,
future promotional and retention strategies may be developed to increase player engagement
in those guilds that are part of a cluster that represents the smallest magnitude of correlations.
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Similarly, a guild cluster that exhibits relatively higher correlations may include loyalty re-
wards that further encourage player engagement in these guilds.

While this article demonstrates the applicability of the CREJM framework for the disci-
plined study of MMORPGs, it can be used in a wide range of other applications that need
analyzing multiple longitudinal outcomes where the subjects, such as patients or firms, are
nested within a dynamically evolving group structure, such as hospitals or firm size, and
within those groups the subjects are not necessarily independent of each other. An interest-
ing avenue for future research will be to study the dynamic effect of multiple groups with
which the players may be crossed, such as friendship networks and guilds. We envision in-
corporating such multiple networks into our GLMM based joint modeling framework in the
following two ways: First, we may assume that the three intercepts, one for each of the mod-
els, are player specific and time varying. Then, following Li, Levina and Zhu (2019); Le and
Li (2020), we may incorporate a fusion penalty on these intercepts for each time point such
that two players who are in the same friendship network at time j will have similar intercepts.
This can be achieved through some constraint matrix that operates on Γ(s) in Equation (8).
However, variable selection and estimation in this model will be challenging, both theoreti-
cally and computationally, and will require further investigation. The second approach may
instead include additional time varying random intercepts to model the dynamic effect of
multiple groups with which the players may be crossed. Variable selection in such multiple
membership mixed models is extremely interesting to us and we will pursue these extensions
as part of future research.
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SUPPLEMENTARY MATERIAL

Supplement A: Joint Modeling of Playing Time and Purchase Propensity in Mas-
sively Multiplayer Online Role Playing Games using Crossed Random Effects
This supplement provides the proof of the theoretical result and additional numerical results.

Supplement B: Source code for “Joint Modeling of Playing Time and Purchase
Propensity in Massively Multiplayer Online Role Playing Games using Crossed Ran-
dom Effects”
This supplement holds the R code for reproducing all analyses in this paper.
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